雨水收集存儲器翻譯
⑴ 求一篇給排水相關的英文文獻及翻譯
我畢業設計的,雖說語言有點生澀,不過是自己翻譯的,應該符合老師的要求。英文是PDF格式的
建築物服務工程設計與技術
屋頂排水設計性能的近期與遠期優勢
最近十年見證了屋頂排水系統設計方面的巨大變化,特別的是,虹吸雨水排水系統已經得到逐步改善,並且有可能得到重點應用。發生這些變化的同時,城市排水系統設計已經發生了巨大的變化,因為適用范圍更廣的可持續發展城市排水系統設計,還有人們對於氣候變化帶來的洪水泛濫的更多關注。這篇文章的主要內容就是,如何設計屋頂雨水排水系統並使之有良好的運行性能。需要特別注意的是如何改掉已經形成的不良設計習慣,同時還要需要考慮屋頂排水系統的創新,如綠色屋頂和雨水收集系統。
實際應用:在過去幾年,屋頂雨水排水系統的設計已經發生了巨大的變化。在大型建築物上,虹吸雨水排水技術已經很常見,還有綠色屋頂由於其有利於綠色發展,正得到越來越多的應用。考慮到正在進行的研究,本文主要介紹如何有效地設計各種不同的屋頂雨水排水系統,並使其達到理想的設計效果。
1.緒論
在過去十年,城市與水排水系統設計已經想著廣為接受的可持續發展城市排水系統或者最優管理方向發展。設計這些系統主要原則是,既要有符合當地發展水平的質量,又要為投資者創造一定的經濟效益。這種原則已經引發了集水池發展方式新的變化。盡管這種裝置的應用正在逐漸減少,但是城市環境要求比較高的地區仍然要求100%防水且排水迅速,例如屋頂。通常屋頂排水系統在設計、建造和維護時並沒有受到應有的重視。盡管排水系統的投資費用只佔建築總投資的一小部分,但是,並不能據此來判斷設計不良帶來的損失。
主要有兩種不同形式的屋頂排水系統設計方法,分別是傳統的和虹吸式方法。傳統的系統依靠大氣壓力工作,其驅動壓頭受到水槽流動深度的影響。因此傳統的屋頂排水系統需要一個直徑相當大的垂直下降管,在排放之前,所有的裝置都必須連接到地下水收集管網。與此相反,虹吸式屋頂排水系統通常設計成滿管流(紊流狀態意味著只需要較小的排氣管),從而會形成負壓,較大的壓頭和較大的流速。通常虹吸式系統需要較少的下降管,在負壓狀態下工作,意味著給水管網可以較高的高度上工作,從而減少地下管網量。
兩種系統都由三部分組成:屋頂,雨水收集管道,系統管網。
所有這些部分都能夠改變系統的水壓分布。這部分主要關注各部分的作用和性能。由於虹吸系統的工作原理並沒有得到很好的理解,得到的論證比較少,本文將會重點介紹虹吸系統。
2.屋頂
通常屋頂是由建築師設計的,而不是由排水設計者設計的。主要有三種屋頂。
2.1平屋頂
平屋頂主要應用在降雨量比較少的地區和發達國家的工業建築。這種屋頂並不完全是平的,而是低於所規定的屋頂最小坡度。例如,英國規定最大坡度為10°。設定最小坡度是為了避免任何不必要的積水。
盡管平屋頂如果得不到正確的維護會產生較多的問題,但它會減少建築物內的死區,且比斜屋頂有利於室內氣流組織。
2.2斜屋頂
大多數居住建築和商業建築都是斜屋頂,斜屋頂最大的優點是可以迅速排水,從而可以減少漏水。在溫帶地區,不需要考慮屋頂承載的降雪載重。一旦下雨,斜屋頂通過的降雨量就可以通過計算確定。當有降雨資料可以利用時,可以使用運動學理論來解決這類問題。
2.3綠色屋頂(平的或者是斜的)
可以證明最老的屋頂就是綠色屋頂,它包括可以減少或驅散降雨的種有植物的屋頂。它可以是種有樹和灌木的屋頂花園,也可以是長有植被的輕型屋頂地毯。其中後一種技術已經得到廣泛應用。其中一些應用趨向於側重美學要求並經常應用於綠色發展。由於審美要求和水壓要求,綠色屋頂還有熱絕緣的功能,減少熱島效應,有消聲作用,延長屋頂的使用壽命。
綠色屋頂在德國應用最為廣泛,在北美地區次之,但是要考慮美學上的影響。德國是目前為止最有經驗的國家,早在19世紀就有實際應用,當時作為在城市地區替代焦油屋頂降低火災危險的一種選擇。目前德國主要研究放在種植問題上,對城市的其它問題考慮較少。從1987年到1989年的一項研究工作,發現裝有70毫米厚的綠色屋頂可以減少60%-80%的熱損失。在加拿大的一項基於電腦模型的工作,表明在屋頂只要集水器是、的面積能夠達到屋頂面積的70%,在一年內就能減少60%,同樣的模型也被用於人工降雨,其結果都表明集水器在降雨季有助於雨水排走。
但是這些研究都沒有表明綠色屋頂在降雨季可以發揮多大的作用,或者給水管的收集效率有多高。美國做了一些測驗,只要對綠色屋頂經常的澆灌,就可以在一次降雨中減少65%的徑流量。美國最有權威的綠色屋頂指導原則是由新澤西州環保部門頒布的。這項原則主要是解決輕型結構問題,以及如何在兩年之後還能正常的排水。
降雨周期是根據是根據失敗的概率決定的。通常的系統是根據暴雨期間兩分鍾的降雨量,這兩分鍾是有選擇的。盡管這種模型會得到更高的流量,但是沒有其他更好的替代方法。研究表明,傳統模型應用於綠色屋頂的研究是是不成熟的。
流失量系數比傳統屋頂記錄的要小,大約為98.7%.
峰值流量也會減少,雖然沒有滲透,但是表面粗糙度也會產生顯著的影響。
集中降雨的時間要比兩分鍾要長,特別是對面積較大的屋頂,如公共建築、商業建築、工業建築。
城市排水設計還要考慮其他一些因素,對於一個復雜的系統來說,一個綠色屋頂在一場降雨中是不夠的。流量水位曲線顯示的持續期要比傳統系統長。並且兩場獨立的將與之間的影響也是有可能的,這需要更加精確的時間周期。
3.雨水收集器
雨水收集器的基本要求是要能夠容納設計暴雨時的降雨量。盡管通常情況下可以通過讓屋頂稍微傾斜來達到排水的目的,但是建築工業的性質及建築物的沉降都會式屋頂變得平坦,在水平放置的水槽中,水的剖面是向外傾斜的,這是流體靜力學的作用。
3.1排水溝出口的深度
判斷雨水收集器是否具有足夠容積的關鍵是集水器外部出口的設置情況。還會影響流入雨水排水系統管道的流速,還會影響集水器的積水深度。盡管集水器的深度不會帶來什麼特別的問題,但是過深會導致集水器過高。
20世紀80年代的大量研究表明,傳統屋頂排水系統的出水口的流動情況可以分為兩種情況。這取決於水深與出口尺寸的大小。當水深小於出口直徑的一半時,流動情況是第一種類型,並且出口的流動情況可以通過合適的方程計算出;隨著水深的增加,出口會被慢慢堵塞,流動形式會變成另一種形式,同時,出口的流動情況可以通過其他方程得出。盡管傳統屋頂排水系統被設計成可以自由排水,但是設計中遇到限制可能會使出流不是自由的。在這種情況下,就會需要額外的深度。
在虹吸式屋頂排水系統中,出水口被設計成淹沒出流,。在這種情況下,決定出水口的深度比較復雜的,因為集水器的設計取決於流動情況。近期的研究表明,傳統的屋頂雨水排水系統使用各種非標準的集水器,它們的深度和高度,都要比出口的直徑大。這最終會造成虹吸作用。對於一個給定的集水器,始端的流動情況取決於下降管的直徑。類似的現象也被用於研究標準的集水器,在這些情況下,受限的虹吸作用只發生在離出口比較近的距離內。
3.2槽內的流動分類
在集水槽復雜流動出口的流動分類中,可以從表2a中看出,流動會出現均勻的分層,而不管入口的流動情況是否相同。表2b和2c表明,出口的分布會極大的影響流動情況。
當出口不是自由射流時,集水槽中復雜出口的流動情況分類是很難描述的。因為每個集水槽內的壓力都有可能是合並的。例如,虹吸系統中的管子在靠近設計點時是充滿射流,出口的流動分類取決於每個支路的能量損失。
3.3靜水剖面
集水器中水表面的形狀可以根據渠內流動方程進行分類。在大多數情況下,低流速意味著有較小的摩擦損失,如果出口是自由射流,那麼摩擦損失是可以忽略的,靜水剖面可以通過方程1來決定水平距離。
式中Q--流量(m3/s)
T—表面寬度(m)
g—重力加速度(m/s2)
F—流動面積(m2)
方程1在摩擦力不可忽略時需要進行修正(管道很長或流速很大時),或者不是自由射流。
3.4現行的設計方法
先前的討論已經強調了設計與水槽時應該考慮的主要因素。然而如果不藉助於一定的數量模型,計算屋頂排水系統的靜水剖面、集水槽容積是不可能的。這對大型商業和製造業來說,是一個發展機會,可以合並幾千米的水管路線。因此,傳統的排水系統的集水槽的設計方法主要是根據經驗,並假定出口是自由射流。
集水槽在建築物中的位置,可能會造成失敗的例子。
不同的集水槽界面
除了上面列舉的情況外,還允許設計者採用經驗數據。
3.5數字模型
大量的數字模型可以用來准確描述任何形式的集水槽內的流動情況,不管屋頂流量是否穩定。這種組合模型的一個例子是屋頂網模型。這種模型使用戶能夠對不同方面的數據進行分類說明,包括:雨季降雨情況的詳細情況,屋頂表面排水的詳細情況等。運動學也被用於研究雨水從流動到集水槽中的研究。一種典型的方法是基於解決開式系統中一位空間流動基本問題。這種模型自動解決集水槽出口流動情況,還能處理自由射流的情況,也能模擬空間中的受限流動以及淹沒出流。輸出值包括深度、流速等。
目前,各種模型本質上還只是研究工具,還需要經過實際工程的檢驗。然而,我們應該正視模型的各種作用。
4系統管組
管組的組成形式和范圍決定了屋頂排水系統主要依靠的是傳統系統還是虹吸作用。
4.1傳統雨水系統
傳統屋頂雨水系統中,地面管網上面通常是垂直管網,連接著集水槽的出口和地下排水系統,重要的系統中還有補償管。應該強調的是,補償管與地面夾角小於10°。整個系統的能力主要依靠的是出水口而不是下降管。
垂直管內的流動通常是自由流動,充滿度只有33%,其效率取決於多餘的管長。如果下降管足夠長(通常大於5m),就有可能出現環形流動。同樣的,補償管內的流動通常情況下也是自由流動,充滿度可達70%。這樣設計的管路既可以用於設計,也可以用各種方程。
4.2虹吸式屋頂排水系統
與傳統排水系統相反,虹吸式屋頂排水系統依靠系統外的空氣流動,並且管內流動是滿管流。
通常的設計都做了這樣的假設,對於設計的暴雨,虹吸系統能夠迅速排出雨水。這種假設可以讓虹吸系統應用水靜壓理論。經常用到穩定流能量方程。盡管這種方法忽略了進口處少量的能量損失,但經過實驗表明還是有利於實際應用。
然而穩定狀態的設計方法在虹吸系統暴露在雨水系統時的標准不符合要求或者降雨強度的變化很大時是不能應用的。在第一種情況中,將會有一定質量的空氣混入,出現環狀流。這些問題在系統不是一個整體時更為嚴重。由於通常設計的降雨都是普通的,很明顯現在的設計方法隨著時間的推移可能會不適用於虹吸式系統。這是一個主要的缺點,因為設計中的主要問題是雜訊和振動問題。
盡管現有的設計方法有缺點,但世界上大量的工程卻很少有失敗的報告。當出現失敗時,很有可能是下面的原因:
對操作要點理解不正確
不合格的原材料明細表
安裝缺陷
維護管理不當
為了克服這些缺點,最近已經開展了一系列研究工程,來討論虹吸式系統,並發展數字模型。從這項工作中我們學到很多。
與現有設計方法相反的一些假設,虹吸式系統主要有以下幾個方面:
1) 系統中的流動是非充滿流動
2) 水平流動的某些管段存在滿管流
3)滿管流向下游傳播,通過垂直管,上升管等
4) 滿管流出現在垂直段,系統內壓力降低
5)下降管內是滿管流,將會出現氣塞
6)出現完全的虹吸作用,直到進入系統的空氣低於一定的水平
表4a列的數據表明,在低於設計點時,虹吸式系統會出現不穩定的流動,集水槽內的深度不足以維持虹吸作用。表4b表明非穩定流在虹吸式系統中何時會出現。
表5列舉了一個數字模型輸出的數據。可以看出,這種模型能夠准確描述虹吸作用,以及穩定虹吸狀態,數據也表明該模型能夠准確描述復雜的虹吸作用。
5結論
本文已經圖示說明了屋頂排水系統的關鍵,但這些在城市排水系統設計中往往被人們忽視。本文也表明設計過程是一個復雜的過程,主要依靠出口的性能。下面這些結論是根據設計總結出來的:
1) 運行依靠三個相互作用的部分:屋頂、集水槽、水管
2) 綠色屋頂可以減少流量,美化城市
3) 出口對系統的性能至關重要
4) 虹吸式排水系統在大型工程中有較大的優勢,但是必須考慮高昂的維修費用
5) 設計虹吸式排水系統應該考慮額外的容量和操作問題
盡管綠色屋頂是比較有吸引力的一種選擇,但是傳統屋頂在國內建築物中將會持續占統治地位。綠色屋頂將會逐步發展,並逐步被人們廣泛接受。同樣的,屋頂排水系統所顯示的高效表明它將會在商業建築的排水系統中持續發揮巨大的作用。
屋頂排水系統的最大威脅來自氣候變化,現有的系統並不是簡單的趨向於老化;降雨形式的變化將會導致低效的運行,自我清潔的速率也會降低。而且屋頂風速的變化也會加速屋頂的老化,因此十分有必要進行維修保養。考慮到氣候的變化,材料的增多,收集屋頂的雨水將會更為廣泛。目前,全球的雨水量大約為7到300升每人每天,在英國,平均消耗量為145L/h/d,這其中只有大約1升是人使用的,有大約30%用於廁所,研究表明,如果水資源短缺,收集屋頂雨水對發達國家和發展中國家都是值得推薦的方法。
Recent and future advances in roof drainage design and performance
Recent and future advances in roof drainage design
and performance
S Arthur BEng (Hons) PhD and GB Wright MEng PhD
School of the Built Environment, Heriot-Watt University, Edinburgh, UK
The past 10 years have witnessed significant changes in the way roof drainage
systems are understood and designed. In particular, there has been a stepchange
in the confidence with which siphonic roof drainage systems may be
specified and expected to perform. These changes have occurred whilst urban
drainage design in general has been revolutionized by wider acceptance of
Sustainable Urban Drainage Systems and greater public concern regarding
pluvial flooding within the context of climate change. This text considers, in
detail, both how roof drainage systems are designed and how they should be
expected to perform. Particular attention is drawn to weaknesses in accepted
design methods. Consideration is also given to 『innovative』 roof drainage related
approaches such as green roofs and rainwater harvesting.
Practical application: Over the past few years there have been many changes in
how roof drainage systems are specified and designed. On large buildings,
technologies such as 『siphonic roof drainage』 are now commonplace and there is
an ever increasing demand for 『green roofs』 to be specified e to their potential
to 『green』 developments. Based on ongoing research, this paper details how
these different types of roof drainage solutions can be efficiently designed and
what levels of performance can be expected.
1 Introction
Over the past decade urban drainage systems
have moved towards what are now commonly
known as 『Sustainable Urban Drainage Systems』
(SUDS) or 『Best Management Practice』
(BMP). Fundamental to the implementation
of these systems is addressing both runoff
quantity and quality at a local level in a
manner which may also have the potential to
offer amenity benefits to stakeholders. This has
led to a change in the way new developments
now look and interact within catchments.
However, despite the availability of such tools
to rece, attenuate and treat urban runoff,
substantial areas of the urban environment are
still 100% impermeable and drain rapidly;
namely roof surfaces. Normally, roof drainage
systems do not always receive the attention
they deserve in the area of design, construction
and maintenance. Although the cost of a
system is usually only a small proportion of a
building』s total cost, it can be far outweighed
by the costs of the damage and disruption
resulting from a failure of the system to provide
the degree of protection required.
Address for correspondence: Scott Arthur, School of the Built
Environment, Heriot-Watt University, Edinburgh EH14 4AS,
UK. E-mail: [email protected]
Building Serv. Eng. Res. Technol. 26,4 (2005) pp. 337 /348
# The Chartered Institution of B©u i2l0d0i5n SgASGeEr PvuicbeliscaEtionngsi.n Aelel rrisgh2ts0 0re5served. Not for commercial use or unauthorized distribution. 10.1191/0143624405bt127tn
Downloaded from http://bse.sagepub.com at Heriot - Watt University on January 31, 2007
There are basically two different types of
roof drainage system, namely conventional
and siphonic (see Figure 1). Conventional
systems operate at atmospheric pressure, and
the driving head is thus limited to the gutter
flow depths. Consequently, conventional roof
drainage systems normally require a considerable
number of relatively large diameter vertical
downpipes, all of which have to connect
into some form of underground collection
network before discharging to the surface
water drain. In contrast, siphonic roof drainage
systems are designed to run full-bore
(turbulent gutter conditions mean that there
will always be a small percentage of entrained
air within the system, typically 5%), resulting
in sub-atmospheric system pressures, higher
driving heads and higher system flow
velocities. Hence, siphonic systems normally
require far fewer downpipes, and the depressurized
conditions also mean that much of the
collection pipework can be routed at high
level, thus recing the extent of any underground
pipework.
Both types of drainage system comprise
three basic interacting components:
. the roof surface;
. the rainwater collection gutters (including
outlets);
. the system pipework.
Each of these components has the ability to
substantially alter the runoff hydrograph as it
is routed through the system. This text will
focus on the role and performance of each of
these components. As the principles of siphonic
drainage are generally less well understood,
and certainly less well documented,
particular emphasis will be placed on the
performance of siphonic roof drainage systems
in this text.