存儲示波器
A. 示波器可以存儲幾組波形
一般來講 雙通道的示波器 可以同時顯示2個不同的波形,如果是多通道的,那就可以同時顯示多個波形。
對於數字存儲示波器來講,存儲波形是無限制的(根據內存的大小而決定 (U盤大小)),有的機器不帶外部存儲,只能靠機器本身內部存儲,那就有限制了(一般為10個),還有一種是沒有外部存儲,但是可以通過電腦存儲到電腦(缺點,不方便操作)
建議購買普源示波器 這個是國產中的戰斗機!!
B. 示波器如何保存波形
我用的SDS5102X,保存波形有兩種格式:圖像和數據。
圖像格式就是直接將屏幕圖象以.bmp、.jpg或.png格式保存,這種比較直觀但是無法查詢數據。
數據格式就以二進制數據(.bin)、CSV數據(.csv)或matlab數據(.dat)保存,可以用相應的方式打開並繪制波形,這種比較有利於後續分析。
C. 數字存儲示波器的工作原理是怎樣的
數字存儲示波器的工作原理:輸入的電壓信號經耦合電路後送至前端放大器,前端放大器將信號放大,以提高示波器的靈敏度和動態范圍。放大器輸出的信號由取樣/保持電路進行取樣,並由A/D轉換器數字化,經過A/D轉換後,信號變成了數字形式存入存儲器中,微處理器對存儲器中的數字化信號波形進行相應的處理,並顯示在顯示屏上。
數字示波器是數據採集,A/D轉換,軟體編程等一系列的技術製造出來的高性能示波器。數字示波器一般支持多級菜單,能提供給用戶多種選擇,多種分析功能。還有一些示波器可以提供存儲,實現對波形的保存和處理。 目前高端數字示波器主要依靠美國技術,對於300MHz帶寬之內的示波器,目前國內品牌的示波器在性能上已經可以和國外品牌抗衡,且具有明顯的性價比優勢。
D. 存儲深度對示波器的影響到底有多大
得益於電子技術的發展,在國外三巨頭壟斷的示波器領域,國產示波器也如雨後春筍般涌現出來,優秀國產示波器的代表:鼎陽(Siglent)科技和北京普源精電,如今得到了長足的發展,但由於信號傳輸的鏈路瓶頸以及IC封鎖,夾縫中生長的國產示波器註定暫時只能走低端路線,這導致了國產示波器同質化比較嚴重、各廠家生產的示波器性能跟質量參差不齊。放眼望去,外觀乃至界面各廠商都一致地採用所謂的「主流」操作方式,而作為衡量示波器的技術指標,工程師更多地考慮那些出現在產品手冊和雜志廣告的標題中列出的技術指標,在這些主要的技術指標中,眾所周知的是帶寬、采樣率和存儲深度。誠然帶寬指標理所當然非常重要。帶寬決定示波器對信號的基本測量能力。隨著信號頻率的增加,示波器對信號的准確顯示能力將下降。如果沒有足夠的帶寬,示波器將無法分辨高頻變化。幅度將出現失真,邊緣將會消失,細節數據將被丟失。如果沒有足夠的帶寬,得到的關於信號的所有特性,響鈴和振鳴等都毫無意義。本規格指出示波器所能准確測量的頻率范圍。每位工程師都足夠重視帶寬對測量的影響,所以大家都遵循測量的五倍法則:示波器所需帶寬=被測信號的最高信號頻率*5,使用五倍准則選定的示波器的測量誤差將不會超過+/-2%,對大多的操作來說已經足夠。關於采樣率,指數字示波器對信號采樣的頻率,類似於電影攝影機中的幀的概念。示波器的采樣速率越快,所顯示的波形的解析度和清晰度就越高,重要信息和事件丟失的概率就越小,信號重建時也就越真實。采樣率又分為實時采樣率跟等效采樣率,我們平常所說的采樣率是指實時采樣率,這是因為實時采樣率可以用來實時地捕獲非周期異常信號,而等效采樣率則只能用於採集周期性的穩定信號。 存儲深度雖然也作為重要指標之一,但在衡量示波器時候卻往往忽略它的重要性,一直以來都把它作為一個「次要」指標看待,並不是很清楚大的存儲深度對於測量有什麼影響,再加上有些示波器廠家對「存儲深度」的誤導,同時存儲深度跟采樣率的隱藏關聯關系,導致存儲深度處於一個形同虛設的指標,為了糾正這些誤解,下面跟大家一起探討什麼是存儲深度?大的存儲深度對測量有什麼影響? 何謂存儲深度存儲深度是示波器所能存儲的采樣點多少的量度。如果您需要不間斷的捕捉一個脈沖串,則要求示波器有足夠的存儲器以便捕捉整個事件。將所要捕捉的時間長度除以精確重現信號所須的取樣速度,可以計算出所要求的存儲深度,也稱記錄長度。並不是有些國內二流廠商對外宣稱的「存儲深度是指波形錄制時所能錄制的波形最長記錄「,這樣的偷換概念,完全向相反方向引導人們的理解,難怪乎其技術指標高達」1042K「的記錄長度。這就是為什麼他們不說存儲深度是在高速采樣下,一次實時採集波形所能存儲的波形點數。把經過A/D數字化後的八位二進制波形信息存儲到示波器的高速CMOS內存中,就是示波器的存儲,這個過程是「寫過程」。內存的容量(存儲深度)是很重要的。對於DSO,其最大存儲深度是一定的,但是在實際測試中所使用的存儲長度卻是可變的。在存儲深度一定的情況下,存儲速度越快,存儲時間就越短,他們之間是一個反比關系。同時采樣率跟時基(timebase)是一個聯動的關系,也就是調節時基檔位越小采樣率越高。存儲速度等效於采樣率,存儲時間等效於采樣時間,采樣時間由示波器的顯示窗口所代表的時間決定,所以:存儲深度=采樣率× 采樣時間(距離 = 速度×時間)由於DSO的水平刻度分為12格,每格的所代表的時間長度即為時基(timebase),單位是s/div,所以采樣時間= timebase × 12. 由存儲關系式知道:提高示波器的存儲深度可以間接提高示波器的采樣率,當要測量較長時間的波形時,由於存儲深度是固定的,所以只能降低采樣率來達到,但這樣勢必造成波形質量的下降;如果增大存儲深度,則可以以更高的采樣率來測量,以獲取不失真的波形。下圖曲線揭示了采樣率、存儲深度、采樣時間三者的關系及存儲深度對示波器實際采樣率的影響。比如,當時基選擇10us/div檔位時,整個示波器窗口的采樣時間是10us/div * 12格=120us,在1Mpts的存儲深度下,當前的實際采樣率為:1M÷120us︽8.3GS/s,如果存儲深度只有250K,那當前的實際采樣率就只要2.0GS/s了! 存儲深度決定了實際采樣率的大小一句話,存儲深度決定了DSO同時分析高頻和低頻現象的能力,包括低速信號的高頻雜訊和高速信號的低頻調制。明白了存儲深度與取樣速度密切關系後,我們來淺談下長存儲對於我們平常的測量帶來什麼的影響呢?平常分析一個十分穩定的正弦信號,只需要500點的記錄長度;但如果要解析一個復雜的數字數據流,則需要有上萬個點或更多點的存儲深度,這是普通存儲是做不到的,這時候就需要我們選擇長存儲模式。可喜的是現在國產示波已經具有這樣的選擇,比如鼎陽(Siglent)公司推出的ADS1000CA系列示波器高達2M的存儲深度,是目前國產示波器最大的存儲深度示波器,打破了只有高端示波器才可能具有大的存儲深度的功能。通過選擇長存儲模式,以便對一些操作中的細節進行優化,同時配備1G實時采樣率以及高刷新率,完美再現捕獲波形。長存儲對平常的測量中,影響最明顯的是在表頭含有快速變化的數據鏈和功率測量中。這是由於功率電子的頻率相對較低(大部分小於1MHz),這對於我們選擇示波器帶寬來說300MHz的示波器帶寬相對於幾百KHz的電源開關頻率來說已經足夠,但很多時候我們卻忽略了對采樣率和存儲深度的選擇.比如說在常見的開關電源的測試中,電壓開關的頻率一般在200KHz或者更快,由於開關信號中經常存在著工頻調制,工程師需要捕獲工頻信號的四分之一周期或者半周期,甚至是多個周期。開關信號的上升時間約為100ns,我們建議為保證精確的重建波形需要在信號的上升沿上有5個以上的采樣點,即采樣率至少為5/100ns=50MS/s,也就是兩個采樣點之間的時間間隔要小於100/5=20ns,對於至少捕獲一個工頻周期的要求,意味著我們需要捕獲一段20ms長的波形,這樣我們可以計算出來示波器每通道所需的存儲深度=20ms/20ns=1Mpts !這就是為什麼我們需要大的存儲深度的原因了!如果此時存儲深度達不到1 Mpts,只有普通示波器的幾K呢?那麼要麼我們無法觀測如此長周期信號,要麼就是觀測如此長周期信號時只能以低采樣率進行采樣,結果波形重建的時候根本無法詳細顯示開關頻率的波形情況。長存儲模式下,既保證了采樣在高速率下對信號進行采樣,又能保證記錄長時間的信號。如果此時只進行單次捕捉或停止採集,那麼在不同時基下擴展波形時由於數據點充分,可以很好觀測疊加在信號上面的小毛刺等異常信號,這對於工程師發現問題、調測設備帶來極大的便利。而如果是普通存儲,為了保持高的采樣率,則在長的記錄時間內,由於示波器的連續采樣,則內存中已經記錄了幾幀數據,內存中的數據並不是一次採集獲得的數據,此時如果停止採集,並對波形旋轉時基進行放大顯示,則只能達到有限的幾個檔位,無法實現全掃描范圍的觀察。在DSO中,通過快速傅立葉變換(FFT)可以得到信號的頻譜,進而在頻域對一個信號進行分析。如電源諧波的測量需要用FFT來觀察頻譜,在高速串列數據的測量中也經常用FFT來分析導致系統失效的雜訊和干擾。對於FFT運算來說,示波器可用的採集內存的總量將決定可以觀察信號成分的最大范圍(奈奎斯特頻率),同時存儲深度也決定了頻率解析度△f。如果奈奎斯特頻率為500 MHz,解析度為10 kHz,考慮一下確定觀察窗的長度和採集緩沖區的大小。若要獲得10kHz 的解析度,則採集時間至少為: T = 1/△f = 1/10 kHz = 100 ms,對於具有100kB 存儲器的數字示波器,可以分析的最高頻率為:△ f × N/2 = 10 kHz × 100kB/2 = 500MHz。對於DSO來說,長存儲能產生更好的FFT結果,既增加了頻率解析度又提高了信號對雜訊的比率。 一句話,長存儲起到一個總覽全局又細節呈現的的效果,存儲深度決定了DSO同時分析高頻和低頻現象的能力,包括低速信號的高頻雜訊和高速信號的低頻調制。
E. 示波器存儲的波形數據能用什麼軟體還原成波形
我用的SDS5102X,波形數據有三種存儲類型:二進制(.bin)、matlab(.dat)和CSV(.csv),我通常是用他們的軟體EasyScopeX來打開的,看你存的是哪種類型,dat就可以用matlab打開,實在不行也可以給文件轉個格式。
F. 數字存儲示波器 如何使用
1定義編輯
數字存儲示波器(Digital Storage oscilloscopes-DSO),所謂數字存儲就是在示波器中以數字編碼的形式來儲存信號。一般具有以下特點:
1.可以顯示大量的預觸發信息
2.可以通過使用游標和不使用游標的方法進行全自動測量
3.可以長期存儲波形
4.可以將波形傳送到計算機進行儲存或供進一步的分析之用
5.可以在列印機或繪圖儀上製作硬考貝以供編制文件之用
6.可以把新採集的波形和操作人員手工或示波器全自動採集的參考波形進行比較
7.可以按通過/不通過的原則進行判斷
8.波形信息可以用數學方法進行處理
2原理編輯
數字存儲示波器有別於一般的模擬示波器,它是將採集到的模擬電壓信號轉換為數字信號,由內部微機進行分析、處理、存儲、顯示或列印等操作。這類示波器通常具有程式控制和遙控能力,通過GPIB介面還可將數據傳輸到計算機等外部設備進行分析處理。
其工作過程一般分為存儲和顯示兩個階段。在存儲階段,首先對被測模擬信號進行采樣和量化,經A/D轉換器轉換成數字信號後,依次存入RAM中,當采樣頻率足夠高時,就可以實現信號的不失真存儲。當需要觀察這些信息時,只要以合適的頻率把這些信息從存儲器RAM中按原順序取出,經D/A轉換和LPE濾波後送至示波器就可以觀察的還原後的波形。
普通模擬示波器 CRT 上的 P31 熒光物質的余輝時間小於 1ms。在有些情況下,使用 P7 熒光物質的 CRT 能給出大約 300ms 的余輝時間。只要有信號照射熒光物質,CRT 就將不斷顯示信號波形。而當信號去掉以後使用 P31 材料的 CRT 上的掃跡迅速變暗,而使用 P7 材料的 CRT 上的掃跡停留時間稍長一些。
那麼,如果信號在一秒鍾內只有幾次,或者信號的周期僅為數秒,甚至信號只猝發一次,那又將會怎麼樣呢?在這種情況下,使用我們上面介紹過的模擬示波器幾乎乃至於完全不能觀察到這些信號。
所謂數字存儲就是在示波器中以數字編碼的形式來貯存信號。當信號進入數字存儲示波器,或稱 DSO 以後,在信號到達CRT 的偏轉電路之前(圖1),示波器將按一定的時間間隔對信號電壓進行采樣。然後用一個模/數變換器(ADC)對這些采樣值進行變換從而生成代表每一個采樣電壓的二進制字。這個過程稱為數字化。
獲得的二進制數值貯存在存儲器中。對輸入信號進行采樣的速率稱為采樣速率。采樣速率由采樣時鍾控制。對於一般使用情況來說,采樣速率的范圍從每秒 20 兆次(20MS/s)到 200MS/s。存儲器中貯存的數據用來在示波器的屏幕上重建信號波形。所以,在DSO中的輸入信號接頭和示波器 CRT 之間的電路不只是僅有模擬電路。輸入信號的波形在 CRT 上獲得顯示之前先要存貯到存儲器中,我們在示波器屏幕上看到的波形總是由所採集到數據重建的波形,而不是輸入連接端上所加信號的直接波形顯示。
3產品簡介編輯
TDS1000C-SC數字存儲示波器是2010年泰克公司針對中國市場推出的具備更多功能和更多性能的入門機型,截止2012年6月,TDS數字存儲示波器系列憑借其在數字實時采樣方面的優秀性能表現,加上所具備的多樣的分析功能和簡潔直觀的操作獲得「全球最受歡迎的示波器」稱號,更累積銷量達到15萬台。[1]
參考資料
1. TDS1000c數字存儲示波器 .泰克科技官網 [引用日期2013-02-4] .
G. 示波器的作用是什麼
示波器是一種用途十分廣泛的電子測量儀器。它能把肉眼看不見的電信號變換成看得見的圖像,便於人們研究各種電現象的變化過程。示波器利用狹窄的、由高速電子組成的電子束,打在塗有熒光物質的屏面上,就可產生細小的光點(這是傳統的模擬示波器的工作原理)。在被測信號的作用下,電子束就好像一支筆的筆尖,可以在屏面上描繪出被測信號的瞬時值的變化曲線。利用示波器能觀察各種不同信號幅度隨時間變化的波形曲線,還可以用它測試各種不同的電量,如電壓、電流、頻率、相位差、調幅度等等。
北京淼森波信息技術有限公司是一家技術服務型公司。即為中小型、初創型企業提供硬體開發配套服務和硬體測試服務。公司產品12.5GHz 示波器高達250 M 樣點的記錄長度及MultiView ZoomTM 功能,快速進行導航,傑出的信號完整性的信噪比,觀察波形真實的表現。
H. 示波器如何保存波形數據,保存下來的怎麼看
有一篇文章專門講解這個的:了解示波器的多種文件存儲方式WAV:數據文件保存的第一種方式,將屏幕上顯示的波形數據進行抽樣後保存為二進制文件,以WAV格式保存到本地或者外部存儲器中,可在本機調用打開查看、縮放等。CSV:數據文件保存的第二種方式,它會保存示波器當前通道的波形數據,以CSV格式存到示波器內部存儲或外部存儲器U盤中,是一種逗號分隔值文件格式,其文件以純文本形式存儲表格數據,它會將需要的二進制數據轉換成ASCII碼,以ASCII碼數據進行保存,可用Excel、Access或者文本文件打開,本機不可調用。下圖是用Excel打開一CSV文件後的界面,下部分是以E、F兩項為坐標合成的折線圖:由於保存時間的原因,以WAV和CSV保存的數據文件也是經過取樣的(下圖中有87500個數據點坐標),在保證可以看到信號大部分信息的同時,又將數據保存的時間控制在2秒以內.那麼對於個別需要將一屏28M的波形數據完整保存下來的用戶,面對這幾千萬的龐大數據量,難道真的要等示波器存儲幾個小時嗎?不用著急,TO1000系列平板示波器為這種需求提供第三種保存方式:BIN具體操作流程如下圖所示,前後的操作不到60S的時間,即可獲得這幾千萬的龐大數據量。Data2csv.exe小工具下載地址:
I. 示波器的存儲深度大有什麼好處
示波器是用來觀察波形的儀器,我們當然希望觀察更長時間的波形並且波形細節越多越好,這就涉及到了示波器的兩個參數,采樣時間和采樣率,而存儲深度等於采樣率乘以采樣時間,所以,如果對采樣時間和采樣率有較高要求,建議使用大存儲深度的示波器。