相變存儲器與應用基礎
『壹』 2.請講解下 存儲器的發展過程3.光纖的應用領域
存儲器的發展過程:
1.汞延遲線
汞延遲線是基於汞在室溫時是液體,同時又是導體,每比特數據用機械波的波峰(1)和波谷(0)表示。機械波從汞柱的一端開始,一定厚度的熔融態金屬汞通過一振動膜片沿著縱向從一端傳到另一端,這樣就得名「汞延遲線」。在管的另一端,一感測器得到每一比特的信息,並反饋到起點。設想是汞獲取並延遲這些數據,這樣它們便能存儲了。這個過程是機械和電子的奇妙結合。缺點是由於環境條件的限制,這種存儲器方式會受各種環境因素影響而不精確。
1950年,世界上第一台具有存儲程序功能的計算機EDVAC由馮?諾依曼博士領導設計。它的主要特點是採用二進制,使用汞延遲線作存儲器,指令和程序可存入計算機中。
1951年3月,由ENIAC的主要設計者莫克利和埃克特設計的第一台通用自動計算機UNIVAC-I交付使用。它不僅能作科學計算,而且能作數據處理。
2.磁帶
UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。
磁帶是所有存儲媒體中單位存儲信息成本最低、容量最大、標准化程度最高的常用存儲介質之一。它互換性好、易於保存,近年來,由於採用了具有高糾錯能力的編碼技術和即寫即讀的通道技術,大大提高了磁帶存儲的可靠性和讀寫速度。根據讀寫磁帶的工作原理可分為螺旋掃描技術、線性記錄(數據流)技術、DLT技術以及比較先進的LTO技術。
根據讀寫磁帶的工作原理,磁帶機可以分為六種規格。其中兩種採用螺旋掃描讀寫方式的是面向工作組級的DAT(4mm)磁帶機和面向部門級的8mm磁帶機,另外四種則是選用數據流存儲技術設計的設備,它們分別是採用單磁頭讀寫方式、磁帶寬度為1/4英寸、面向低端應用的Travan和DC系列,以及採用多磁頭讀寫方式、磁帶寬度均為1/2英寸、面向高端應用的DLT和IBM的3480/3490/3590系列等。
磁帶庫是基於磁帶的備份系統,它能夠提供同樣的基本自動備份和數據恢復功能,但同時具有更先進的技術特點。它的存儲容量可達到數百PB,可以實現連續備份、自動搜索磁帶,也可以在驅動管理軟體控制下實現智能恢復、實時監控和統計,整個數據存儲備份過程完全擺脫了人工干涉。
磁帶庫不僅數據存儲量大得多,而且在備份效率和人工佔用方面擁有無可比擬的優勢。在網路系統中,磁帶庫通過SAN(Storage Area Network,存儲區域網路)系統可形成網路存儲系統,為企業存儲提供有力保障,很容易完成遠程數據訪問、數據存儲備份或通過磁帶鏡像技術實現多磁帶庫備份,無疑是數據倉庫、ERP等大型網路應用的良好存儲設備。
3.磁鼓
1953年,第一台磁鼓應用於IBM 701,它是作為內存儲器使用的。磁鼓是利用鋁鼓筒表面塗覆的磁性材料來存儲數據的。鼓筒旋轉速度很高,因此存取速度快。它採用飽和磁記錄,從固定式磁頭發展到浮動式磁頭,從採用磁膠發展到採用電鍍的連續磁介質。這些都為後來的磁碟存儲器打下了基礎。
磁鼓最大的缺點是利用率不高, 一個大圓柱體只有表面一層用於存儲,而磁碟的兩面都利用來存儲,顯然利用率要高得多。 因此,當磁碟出現後,磁鼓就被淘汰了。
4.磁芯
美國物理學家王安1950年提出了利用磁性材料製造存儲器的思想。福雷斯特則將這一思想變成了現實。
為了實現磁芯存儲,福雷斯特需要一種物質,這種物質應該有一個非常明確的磁化閾值。他找到在新澤西生產電視機用鐵氧體變換器的一家公司的德國老陶瓷專家,利用熔化鐵礦和氧化物獲取了特定的磁性質。
對磁化有明確閾值是設計的關鍵。這種電線的網格和芯子織在電線網上,被人稱為芯子存儲,它的有關專利對發展計算機非常關鍵。這個方案可靠並且穩定。磁化相對來說是永久的,所以在系統的電源關閉後,存儲的數據仍然保留著。既然磁場能以電子的速度來閱讀,這使互動式計算有了可能。更進一步,因為是電線網格,存儲陣列的任何部分都能訪問,也就是說,不同的數據可以存儲在電線網的不同位置,並且閱讀所在位置的一束比特就能立即存取。這稱為隨機存取存儲器(RAM),它是互動式計算的革新概念。福雷斯特把這些專利轉讓給麻省理工學院,學院每年靠這些專利收到1500萬~2000萬美元。
最先獲得這些專利許可證的是IBM,IBM最終獲得了在北美防衛軍事基地安裝「旋風」的商業合同。更重要的是,自20世紀50年代以來,所有大型和中型計算機也採用了這一系統。磁芯存儲從20世紀50年代、60年代,直至70年代初,一直是計算機主存的標准方式。
5.磁碟
世界第一台硬碟存儲器是由IBM公司在1956年發明的,其型號為IBM 350 RAMAC(Random Access Method of Accounting and Control)。這套系統的總容量只有5MB,共使用了50個直徑為24英寸的磁碟。1968年,IBM公司提出「溫徹斯特/Winchester」技術,其要點是將高速旋轉的磁碟、磁頭及其尋道機構等全部密封在一個無塵的封閉體中,形成一個頭盤組合件(HDA),與外界環境隔絕,避免了灰塵的污染,並採用小型化輕浮力的磁頭浮動塊,碟片表面塗潤滑劑,實行接觸起停,這是現代絕大多數硬碟的原型。1979年,IBM發明了薄膜磁頭,進一步減輕了磁頭重量,使更快的存取速度、更高的存儲密度成為可能。20世紀80年代末期,IBM公司又對磁碟技術作出一項重大貢獻,發明了MR(Magneto Resistive)磁阻磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度比以往提高了數十倍。1991年,IBM生產的3.5英寸硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此,硬碟容量開始進入了GB數量級。IBM還發明了PRML(Partial Response Maximum Likelihood)的信號讀取技術,使信號檢測的靈敏度大幅度提高,從而可以大幅度提高記錄密度。
目前,硬碟的面密度已經達到每平方英寸100Gb以上,是容量、性價比最大的一種存儲設備。因而,在計算機的外存儲設備中,還沒有一種其他的存儲設備能夠在最近幾年中對其統治地位產生挑戰。硬碟不僅用於各種計算機和伺服器中,在磁碟陣列和各種網路存儲系統中,它也是基本的存儲單元。值得注意的是,近年來微硬碟的出現和快速發展為移動存儲提供了一種較為理想的存儲介質。在快閃記憶體晶元難以承擔的大容量移動存儲領域,微硬碟可大顯身手。目前尺寸為1英寸的硬碟,存儲容量已達4GB,10GB容量的1英寸硬碟不久也會面世。微硬碟廣泛應用於數碼相機、MP3設備和各種手持電子類設備。
另一種磁碟存儲設備是軟盤,從早期的8英寸軟盤、5.25英寸軟盤到3.5英寸軟盤,主要為數據交換和小容量備份之用。其中,3.5英寸1.44MB軟盤占據計算機的標准配置地位近20年之久,之後出現過24MB、100MB、200MB的高密度過渡性軟盤和軟碟機產品。然而,由於USB介面的快閃記憶體出現,軟盤作為數據交換和小容量備份的統治地位已經動搖,不久會退出歷史舞台。
6. 光碟
光碟主要分為只讀型光碟和讀寫型光碟。只讀型指光碟上的內容是固定的,不能寫入、修改,只能讀取其中的內容。讀寫型則允許人們對光碟內容進行修改,可以抹去原來的內容,寫入新的內容。用於微型計算機的光碟主要有CD-ROM、CD-R/W和DVD-ROM等幾種。
上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。
從LD的誕生至計算機用的CD-ROM,經歷了三個階段,即LD-激光視盤、CD-DA激光唱盤、CD-ROM。下面簡單介紹這三個階段性的產品特點。
LD-激光視盤,就是通常所說的LCD,直徑較大,為12英寸,兩面都可以記錄信息,但是它記錄的信號是模擬信號。模擬信號的處理機制是指,模擬的電視圖像信號和模擬的聲音信號都要經過FM(Frequency Molation)頻率調制、線性疊加,然後進行限幅放大。限幅後的信號以0.5微米寬的凹坑長短來表示。
CD-DA激光唱盤 LD雖然取得了成功,但由於事先沒有制定統一的標准,使它的開發和製作一開始就陷入昂貴的資金投入中。1982年,由飛利浦公司和索尼公司制定了CD-DA激光唱盤的紅皮書(Red Book)標准。由此,一種新型的激光唱盤誕生了。CD-DA激光唱盤記錄音響的方法與LD系統不同,CD-DA激光唱盤系統首先把模擬的音響信號進行PCM(脈沖編碼調制)數字化處理,再經過EMF(8~14位調制)編碼之後記錄到盤上。數字記錄代替模擬記錄的好處是,對干擾和雜訊不敏感,由於盤本身的缺陷、劃傷或沾污而引起的錯誤可以校正。
CD-DA系統取得成功以後,使飛利浦公司和索尼公司很自然地想到利用CD-DA作為計算機的大容量只讀存儲器。但要把CD-DA作為計算機的存儲器,還必須解決兩個重要問題,即建立適合於計算機讀寫的盤的數據結構,以及CD-DA誤碼率必須從現有的10-9降低到10-12以下,由此就產生了CD-ROM的黃皮書(Yellow Book)標准。這個標準的核心思想是,盤上的數據以數據塊的形式來組織,每塊都要有地址,這樣一來,盤上的數據就能從幾百兆位元組的存儲空間上被迅速找到。為了降低誤碼率,採用增加一種錯誤檢測和錯誤校正的方案。錯誤檢測採用了循環冗餘檢測碼,即所謂CRC,錯誤校正採用里德-索洛蒙(Reed Solomon)碼。黃皮書確立了CD-ROM的物理結構,而為了使其能在計算機上完全兼容,後來又制定了CD-ROM的文件系統標准,即ISO 9660。
在上世紀80年代中期,光碟的發展非常快,先後推出了WORM光碟、磁光碟(MO)、相變光碟(Phase Change Disk,PCD)等新品種。20世紀90年代,DVD-ROM、CD-R、CD-R/W等開始出現和普及,目前已成為計算機的標准存儲設備。
光碟技術進一步向高密度發展,藍光光碟是不久將推出的下一代高密度光碟。多層多階光碟和全息存儲光碟正在實驗室研究之中,可望在5年之內推向市場。
7.納米存儲
納米是一種長度單位,符號為nm。1納米=1毫微米,約為10個原子的長度。假設一根頭發的直徑為0.05毫米,把它徑向平均剖成5萬根,每根的厚度即約為1納米。與納米存儲有關的主要進展有如下內容。
1998年,美國明尼蘇達大學和普林斯頓大學制備成功量子磁碟,這種磁碟是由磁性納米棒組成的納米陣列體系。一個量子磁碟相當於我們現在的10萬~100萬個磁碟,而能源消耗卻降低了1萬倍。
1988年,法國人首先發現了巨磁電阻效應,到1997年,採用巨磁電阻原理的納米結構器件已在美國問世,它在磁存儲、磁記憶和計算機讀寫磁頭等方面均有廣闊的應用前景。
2002年9月,美國威斯康星州大學的科研小組宣布,他們在室溫條件下通過操縱單個原子,研製出原子級的硅記憶材料,其存儲信息的密度是目前光碟的100萬倍。這是納米存儲材料技術研究的一大進展。該小組發表在《納米技術》雜志上的研究報告稱,新的記憶材料構建在硅材料表面上。研究人員首先使金元素在硅材料表面升華,形成精確的原子軌道;然後再使硅元素升華,使其按上述原子軌道進行排列;最後,藉助於掃瞄隧道顯微鏡的探針,從這些排列整齊的硅原子中間隔抽出硅原子,被抽空的部分代表「0」,餘下的硅原子則代表「1」,這就形成了相當於計算機晶體管功能的原子級記憶材料。整個試驗研究在室溫條件下進行。研究小組負責人赫姆薩爾教授說,在室溫條件下,一次操縱一批原子進行排列並不容易。更為重要的是,記憶材料中硅原子排列線內的間隔是一個原子大小。這保證了記憶材料的原子級水平。赫姆薩爾教授說,新的硅記憶材料與目前硅存儲材料存儲功能相同,而不同之處在於,前者為原子級體積,利用其製造的計算機存儲材料體積更小、密度更大。這可使未來計算機微型化,且存儲信息的功能更為強大。
光纖應用領域:
計算機和微電子製造
用於各種不同的微電子製造工藝和數據儲存處理。
.圖像記錄和列印
用於所有形式的圖像處理和永久性圖像記錄。
.工業製造
用於傳統的工業製造和用作高功率二極體激光泵浦光源
.醫學用於醫學診斷和治療
.科學研究
用於科學研究,包括可調、窄帶寬系統,超快和高能量激光器和高功率泵浦光源。
.通信
用於通信市場上的有源和無源光電產品。
『貳』 pcm是什麼意思,代表什麼
PCM是Phase Change Memory的簡稱,中文名稱為相變存儲器,它利用硫族化合物在晶態和非晶態巨大的導電性差異來存儲數據的。
PCM是一種非易失存儲設備,它利用材料的可逆轉的相變來存儲信息。同一物質可以在諸如固體、液體、氣體、冷凝物和等離子體等狀態下存在,這些狀態都稱為相。相變存儲器便是利用特殊材料在不同相間的電阻差異進行工作的。
原理:
一個電阻連接在GST層的下方。加熱/熔化過程隻影響該電阻頂端周圍的一小片區域。擦除/RESET脈沖施加高電阻即邏輯0,在器件上形成一片非晶層區域。SET脈沖用於置邏輯1,使非晶層再結晶回到結晶態。晶態是一種低能態;因此,當對非晶態下的材料加熱,溫度接近結晶溫度時,它就會自然地轉變為晶態。
在非晶態下,GST材料具有短距離的原子能級和較低的自由電子密度,使得其具有較高的電阻率。由於這種狀態通常出現在RESET操作之後,我們一般稱其為RESET狀態,在RESET操作中DUT的溫度上升到略高於熔點溫度,然後突然對GST淬火將其冷卻。
在晶態下,GST材料具有長距離的原子能級和較高的自由電子密度,從而具有較低的電阻率。一般稱其為SET狀態,在SET操作中,材料的溫度上升高於再結晶溫度但是低於熔點溫度,然後緩慢冷卻使得晶粒形成整層。晶態的電阻范圍通常從1千歐到10千歐。
以上內容參考:網路-PCM
『叄』 PCM技術基礎
PCM技術的基礎特性體現在其可變性、非易失性和高速度上。與RAM或EEPROM類似,PCM的最小存儲單元是位,這種特性使得在更改信息時,無需像快閃記憶體那樣執行單獨的擦除步驟,可以直接從1變為0或0變為1,提高了操作效率。
PCM是非易失性存儲器,即使失去供電也能保持存儲的數據。相比之下,RAM需要穩定的電力支持,且存在軟錯誤的風險。早期的PCM實驗,如Intel的兆比特存儲陣列,顯示出其優秀的非易失性性能,對於長期數據存儲非常有利。
在讀取速度方面,PCM與RAM和NOR快閃記憶體一樣,能夠實現快速的隨機訪問,使得代碼可以直接執行,無需先復制到RAM。其讀取反應時間與一比特NOR相當,且帶寬接近DRAM,這與NAND快閃記憶體的幾十微秒隨機讀取時間形成了鮮明對比。
盡管寫入速度接近NAND,但PCM無需獨立擦除步驟,反應時間更短。然而,當前PCM的寫入速度和帶寬仍不及RAM。隨著技術的不斷進步, PCM的存儲單元將進一步縮小,性能有望得到提升。
在縮放性方面,PCM表現出獨特的優點。由於PCM存儲結構的優勢,可以更容易地縮小尺寸,這與NOR和NAND因門電路厚度限制而難以縮小的情況不同。這種縮放性是PCM技術的一大優勢,符合摩爾定律的存儲密度提升趨勢。
總的來說,相變存儲器,如PCM,因其獨特的性能和潛力,正在重新吸引研究者關注。它集成了NOR快閃記憶體、NAND快閃記憶體、EEPROM和RAM的優點,不僅具有低能耗,還為未來的應用和存儲架構創新提供了廣闊的空間。
(3)相變存儲器與應用基礎擴展閱讀
中文稱脈碼調制,由A.里弗斯於1937年提出的,這一概念為數字通信奠定了基礎,60年代它開始應用於市內電話網以擴充容量,使已有音頻電纜的大部分芯線的傳輸容量擴大24~48倍。到70年代中、末期,各國相繼把脈碼調製成功地應用於同軸電纜通信、微波接力通信、衛星通信和光纖通信等中、大容量傳輸系統。80年代初,脈碼調制已用於市話中繼傳輸和大容量干線傳輸以及數字程式控制交換機,並在用戶話機中採用。
『肆』 可移動存儲設備的常見的可移動存儲設備
PD是「相變式可重復擦寫光碟驅動器()」英文縮寫的簡稱。
PD光碟採用相變光方式,其數據再 生原理與CD光碟一樣,是根據反射光量的差以1和0來判別信號。PD光碟與CD光碟形狀一樣,為了保護盤面數據而裝在盒內使用。
PD光碟系統採用了在計算機、工作站環境中被廣泛使用,與軟盤、硬碟同樣數據構造的單元格式,而且還採用了在計算機環境內立即可被使用的512bit/單元的MCAV格式,採用該格式可比採用CLV格式的CD-R/CD-RW更高速地進行讀寫操作,並實現了尋找速度的高速化。依據以上優勢,PD一開始就受到以Windows95為首的計算機OS的支持,並由於ATAPI介面的規格化,確立了其作為計算機標准裝置的產品地位。相變光碟系統為了保護光碟,採用了將光碟放入保護盒中使用的做法,而CD光碟是裸盤使用。為了同時處理PD盒裝盤、CD裸盤,PD光碟系統採取了新式托盤裝填方式。這種方式也將在DVD-RAM上使用。 數據記錄是熱磁過程,它與磁性材料的居里溫度的門檻性質有關,稱為居里點寫入。在寫入過程中,聚焦光點的能量把記錄材料加熱超過居里點(約200℃),外加不大的磁場(約300高斯)就可對材料的磁疇產生作用。當材料冷卻至居里點以下,磁疇方向就固定下來。這種記錄過程在材料性能不退化的情況下表現出了高度的可重復性(百萬次以上)。
傳統的MO記錄信息的寫過程需三遍:第一遍擦除原有記錄數據:用聚焦激光光束連續照射介質,使其溫度超過居里點,同時外加向一個方向的磁場,介質就被向同一方向磁化;第二遍記錄數據,這時外加相反的磁場,用記錄時間調制的激光脈沖照射介質,使對應脈沖的地方被方向磁化;第三遍驗證數據是否正確地寫入。每一遍對應了碟片旋轉一周。
今後將採用直接重寫(DOW,DirectOverwrite,或OW,Over?Write)技術可把第一、二遍結合為一遍,使得MO的存取速度提高到能在一般場合代替硬磁碟應用。目前MO介質已成為了一個計算環境,用戶可把其整個計算系統,包括操作系統、應用軟體和自己的工作文件,裝在一個MO介質上。從MO系統的性能來看,可達到了完全在MO上運行,而不用載入到HDD上的水平。這就大大拓寬了MO的應用領域。這也使得MO具有了更強的技術生命力和市場競爭力。目前的介質技術已使得MO光碟的速度、可靠性、位存儲價格、可重寫次數、存檔時間等方面,達到了令人比較滿意的水平。這些特點使得MO在與純光記錄設備CDRW/DVD-RAM的競爭中,處於不可替代的地位。 目前個人計算機,主要的存儲設備是固定硬碟和軟盤。固定硬碟為計算機提供了大容量的存儲介質,但是其碟片無法更換,存儲的信息也不便於攜帶和交換。
一般活動硬碟同樣採用Winchester硬碟技術,所以具有固定硬碟的基本技術特徵,速度快,平均尋道時間在12毫秒左右,數據傳輸率可達10M/s,容量從230MB到4.7GB。活動硬碟的碟片和軟盤一樣,是可以從驅動器中取出和更換的,存儲介質是碟片中的磁合金碟片。根據容量不同,活動硬碟的碟片結構分為單片單面、單片雙面和雙片雙面三種,相應驅動器就有單磁頭、雙磁頭和四磁頭之分。活動硬碟介面方式現有內置SCSI、內置EIDE、外置SCSI和外置並口等四種方式。用戶可以根據自己的需求和計算機的配置情況選擇不同的介面方式。
目前世界上主要有兩個廠商生產活動硬碟:美國的SyQuest公司和Iomega公司。SyQuest生產的SparQ是一種典型的活動硬碟,大小同3.5英寸的軟盤一樣,只不過厚度是軟盤的3倍,容量卻是軟盤的694倍,達到了1GB。
IOMega的JAZ驅動器有高達2GB的容量和8MB/s以上的持續數據傳輸速度(SCSI介面的JAZ甚至能達到20M/s),內建512K高速緩存。速度完全能和硬碟相比。另外現在後廉價的外置硬碟盒,可以使普通硬碟成為外置硬碟。 近十年來,3.5英寸的軟磁碟驅動器一直是小型和微型計算機的必備外存儲器,但是面對日益龐大的多媒體文件以及對數據備份的需求,容量小、速度慢、不穩定的傳統1.44MB的軟磁碟越來越顯示出巨大的局限性。傳統的1.44M軟盤市場,正在逐年萎縮。
大容量FD是在原有磁碟的基礎上發展起來的。目前主要有Zip、Supper軟盤(原名LS120)、以及HiFD等。這三種大容量FD的發展目標都是取代現行的3.5英寸FD,爭取在巨大的軟盤市場上占居主導地位。目前國內市場上主要是zip與LS-120相爭。
Zip磁碟的容量比1.44MB軟盤大了70倍,Zip驅動器由於採用了硬碟磁頭技術,因而實現了2945轉/分的轉速,平均尋道時間為29ms。ZIP的速度盡管較快,但使用Zip驅動器遇到的最大問題是:Zip驅動器不能讀取現有上億張的1.44MB軟盤。因此3M、Compaq、O.R.、松下、三菱和日立等六家公司在1996年又推出了容量為120MB、並可兼容1.44MB軟盤的LS-120軟盤驅動器。 快閃記憶體是EPROM(電可擦除程序存儲器)的一種,它使用浮動柵晶體管作為基本存儲單元實現非易失存儲,不需要特殊設備和方式即可實現實時擦寫。快閃記憶體採用與CMOS工藝兼容的加工工藝,現在大多數快閃記憶體採用的是0.5mm、0.35mm工藝,三星已經推出了0.27mm工藝的快閃記憶體,不久0.25mm工藝也將實現。隨著集成電路工藝技術的發展,快閃記憶體內部電路密度越來越大,每個晶體管的存儲位元組數也越來越多,從而使快閃記憶體的容量不斷增大,三星和東芝計劃到2001年推出容量達1GB的快閃記憶體晶元。近幾年各種形式的基於快閃記憶體的存儲設備如雨後春筍般誕生,它們的外形結構豐富多彩,尺寸越來越小,容量越來越大,介面方式越來越靈活。
目前最新的第四代快閃記憶體卡,主要有SanDisk的MultiMedia卡、NexcomTechnology的SerialFlash卡和Sony的MemoryStick記憶棒。第四代快閃記憶體卡均採用了串列快閃記憶體晶元,晶元外部引腳大大減少,同時由於採用串列方式讀寫數據,晶元功耗也降低了許多。MultiMedia卡採用7腳介面,外型尺寸為32mm×24mm×1.4mm,最大容量為32MB,數據傳輸速率為2MB/s,為擴展其應用范圍,SanDisk還推出了並口和USB介面的MultiMedia卡適配器,計算機可以方便地讀寫MultiMedia卡。 盡管CD-ROM驅動器的價位低,並在電腦的存儲領域得到了極為廣泛的應用,但其不能寫入的致命弱點,已逐步成為其發展的障礙,CD-R是英文CDRecordable的簡稱,意為小型可寫光碟。它的特點是只寫一次,寫完後的CD-R光碟無法被改寫,但可以在CD-ROM驅動器和CD-R刻錄機上被多次讀取。CD-R光碟的最大優點是其記錄成本在各種光碟存儲介質中最低,每兆位元組所需花費的成本低於人民幣0.1元,而且其使用壽命很長,因此CD-R已逐漸成為數據存儲的主流產品,在數據備份、數據交換、資料庫分發、檔案存儲和多媒體軟體出版等領域獲得了廣泛應用。另外一種相關的成功技術:CD-RW,也顯露出它是一個信息存儲合適的可選擇性的產品。CR-RW提供次數有限的讀寫功能。事實上,CD-R/CD-RW已經成為一種價廉通用的桌面系統文件交換的工具。今後CD-R/CD-RW將在以下方面得以發展:
最新的CD-R刻錄機將支持CD-UDF格式,在支持CD-UDF格式的DOS或Windows環境下,CD-R刻錄機具有和軟碟機一樣的獨立盤符或圖標。用戶無需使用刻錄軟體,就可象使用軟碟機一樣直接對CD-R刻錄機進行讀寫操作,大大簡化了CD-R刻錄機的操作和管理,給用戶帶來極大的方便。
除整盤刻寫、軌道刻寫和多段刻寫三種刻錄方式外,今後刻錄機還將支持增量包刻寫(IncrementalPacketWriting)刻錄方式。
為了減少追加刻錄過程中的碟片空間浪費,Philips公司開發出了增量包刻錄(IncrementalPacketWriting)方式。增量包刻錄方式的最大優點是允許用戶在一條軌道中多次追加刻寫數據,由於數據區的前間隙和後間隙只佔用了7個扇區,因此增量包刻錄方式與軟硬碟的數據記錄方式類似。增量包刻錄方式特別適用於經常僅需備份少量數據的應用。 快閃記憶體卡是利用快閃記憶體(Flash Memory)技術達到存儲電子信息的存儲器,一般應用在數碼相機、掌上電腦、MP3、MP4等小型數碼產品中作為存儲介質,所以樣子小巧,猶如一張卡片,所以稱之為快閃記憶體卡。根據不同的生產廠商和不同的應用,快閃記憶體卡有Smart Media(SM卡)、Compact Flash(CF卡),Multi Media Card(MMC卡),Secure Digital(SD卡)、Memory Stick(記憶棒),TF卡等多種類型,
這些快閃記憶體卡雖然外觀、規格不同,但是技術原理都是相同的。由於快閃記憶體卡本身並不能直接被電腦辨認,讀卡器就是一個兩者的溝通橋梁。讀卡器Card Reader)可使用很多種存儲卡,如Compact Flash or Smart Media or Microdrive存儲卡等,作為存儲卡的信息存取裝置。讀卡器使用USB1.1/USB2.0的傳輸介面,支持熱拔插。與普通USB設備一樣,只需插入電腦的USB埠,然後插用存儲卡就可以使用了。 按照速度來劃分有USB1.1、USB2.0以及USB3.0,按用途來劃分,有單一讀卡器和多合一讀卡器。
『伍』 關鍵時刻 這所高校與華為簽署戰略合作協議
據華中 科技 大學官方微信22日消息,5月6日,華中 科技 大學與華為技術有限公司簽署戰略合作協議,雙方將進一步深化在人才培養、科學研究、成果轉化等方面的合作, 探索 面向未來的前沿科學。華為公司董事、戰略研究院院長徐文偉,校領導李元元、許曉東、張新亮參加活動。
徐文偉在簽約儀式上表示,華為與華中大具有深厚的合作友誼,華為的發展離不開華中大長期以來的支持。他介紹了華為成立創新研究院的初衷與計劃,未來華為將圍繞信息全流程開展全方位的 探索 ,不斷開拓創新。徐文偉表示,在面向未來的科學探究中,大學、科研機構是華為最重要的合作夥伴;希望通過與華中大的戰略合作,共同促進基礎研究水平的提升,積極應對產業發展面臨的技術挑戰。
華中 科技 大學校長李元元指出,華為是處於行業國際領先地位的龍頭企業,引領著國內相關產業的發展方向,華中科大始終高度重視與華為的各項合作。他強調,當前華為與華中科大都處在 歷史 發展的重要階段,都面對新的發展機遇與挑戰。雙方應共同站高望遠,緊密合作,把握科學和產業發展大方向,共同推動中國創新走向新的高度。李元元希望雙方通過戰略合作,繼續在人才培養、科學研究、成果轉化等方面發揮各自的優勢,為雙方更好的發展創造新局面,為國家前沿科學研究提供更大助力。
華中科大科發院院長朱宏平、人事處處長周莉萍分別介紹了學校 科技 工作、人才引進與人才培養的相關情況。華為武漢研究所技術合作處處長凌黎介紹了華為與華中科大合作的情況。
簽約儀式前,張新亮陪同徐文偉一行前往武漢光電國家研究中心,觀看了研究中心形象宣傳片《創新點亮未來》,聽取相關專家的項目介紹。甘棕松教授、國偉華教授、張靜宇教授、熊偉教授、朱䒟教授、韓宏偉教授先後介紹了相變存儲器及三維相變存儲器、多通道干涉大范圍波長可調諧半導體激光器、納米晶玻璃五維光存儲技術、大功率連續光纖激光器、3D列印、9nm線寬雙光束超衍射極限光刻技術、飛秒激光微納4D列印技術、數字PET、腦連接圖譜、可印刷介觀鈣鈦礦太陽能電池等項目。繆向水教授專題匯報了下一代信息存儲技術的相關研究進展。
下午,副校長許曉東陪同徐文偉一行先後前往國家脈沖強磁場科學中心、引力中心及下一代互聯網接入系統國家工程實驗室參觀。
在國家脈沖強磁場科學中心,中心主任李亮教授介紹了強磁場中心的國際排名、在建項目、部分裝置的科學原理、技術應用等。徐文偉深入了解了中心的電磁成形技術、電渦流制動技術等,並參觀了控制室、物性測試站、低溫物性站等場所。座談會上,雙方就材料研究方面的合作進行洽談,並就晶元可靠性檢驗方式、磁控軟體機器人及永磁電機方面的研究進行了探討。
在引力中心,物理學院黨委書記張凱介紹了引力中心在地球測量方面取得的成就,以及未來在太空領域的研究計劃「天琴計劃」。座談會上,周敏康副教授介紹了引力中心的科學研究平台、應用基礎研究等。雙方就量子精密測量、MEMS時鍾,以及引力波在通信方面的應用可能性等進行了探討。
在下一代互聯網接入系統國家工程實驗室,閆志君副教授、鄧磊教授、魯平教授、付松年教授分別介紹了分布式微結構光纖DAS系統、安全光纖通信技術、分布式光纖氣敏感測技術、高速全光信號處理等,並與徐文偉一行就相關技術在通信方面的應用進行探討。
華為武漢研究所、華為戰略研究院等相關部門負責人,華中科大相關單位負責人參加活動。
據長江日報此前報道,在對華為6000多名員工信息的分析整理發現,畢業於華中 科技 大學的華為員工與電子 科技 大學並列總人數第二,約有2.1%。而任正非之女孟晚舟也是其中一員,她畢業於華中科大前身之一的華中理工大學,擁有該校管理學碩士學位。
位於湖北武漢的華中科大是國家教育部直屬重點綜合性大學,由原華中理工大學、同濟醫科大學、武漢城市建設學院於2000年5月26日合並成立,是國家「211工程」重點建設和「985工程」建設高校之一,是首批「雙一流」建設高校。