當前位置:首頁 » 存儲配置 » 存儲系統的可擴展性級別

存儲系統的可擴展性級別

發布時間: 2024-02-28 12:04:32

❶ RAID0和RAID1的區別

相信很多電腦愛好者對RAID這個詞一定不陌生,但目前RAID並不是很普遍,很多人不懂RAID是什麼意思?RAID0和RAID1有什麼區別?這里我給大家介紹下,一起來看看。

RAID0和RAID1的區別

RAID是什麼意思?

RAID英文全稱“Rendant Array of Inexpensive Disks”中文稱之為獨立冗餘磁碟陣列,也就是我們常說的磁碟陣列,類似將多塊硬碟串聯,主要用於提升硬碟性能與存儲

RAID是一種把多塊獨立的硬碟(物理硬碟)按不同的方式組合起來形成一個硬碟組(邏輯硬碟),從而提供比單個硬碟更高的存儲性能。RAID包括RAID 0~RAID 50等數個規范,我們常使用主要是RAID 0,RAID 1兩種,下面我們再來說說RAID0和RAID1的區別。

磁碟

RAID0和RAID1有什麼區別?

RAID 0連續以位或位元組為單位分割數據,並行讀/寫於多個磁碟上,具有很高的數據傳輸率,但它沒有數據冗餘,並不能算是真正的RAID結構。RAID 0隻是單純地提高性能,並沒有為數據的可靠性提供保證,而且其中的一個磁碟失效將滲姿影響到所有數據,這也是為什麼RAID 0不能應用於數據安全性要求高的場合的原因。

RAID 1又稱鏡像盤,把一個磁碟的數據鏡像到另一個磁碟上,採用鏡像容錯來提高可靠性,具有raid中最高的數據冗餘能力。存數據時會將數據同時寫入鏡像盤內,讀取數據則只從工作盤讀出(電腦百事網PC841.COM)。發生故障時,系統將從鏡像盤讀取數據,然後再恢復工作盤正確數據。這種陣列方式可靠性極高,但是其容量會減去一半。廣泛用於數據要求極嚴的應用場合,如商業金融、檔案管理等領域。只允許一顆硬碟出故障。

鑒於RAID 0和RAID 1各有特點,其中RAID 0主要用於提升硬碟性能,但數據安全性不強,而RAID 1兼顧性能與數據安全,但容量減半,因此將RAID 0和RAID 1組合使用無疑是更完美的方案,因此又有了Raid0+1組合,以及還有流行的Raid5。

關於RAID

磁碟陣列(Rendant Arrays of Independent Disks,RAID),有“獨立磁碟構成的具有冗餘能力的陣列”之意。

磁碟陣列是由很多價格較便宜的磁碟,組合成一個容量巨大的磁碟組,利用個別磁碟提供數據所產生加成效果提升整個磁碟系統效能。利用這項技術,將數據切割成許多區段,分別存放在各個硬碟上。[1]

磁碟陣列還能利用同位檢查(Parity Check)的觀念,在數組中任意一個硬碟故障時,仍可讀出數據,在數據重構時,將數據經計算後重新置入新硬碟中。

簡介

由加利福尼亞大學伯克利分校(University of California-Berkeley)在1988年,發表的文章:“A Case for Rendant Arrays of Inexpensive Disks”。文章中,談到了RAID這個詞彙,而且定義了RAID的5層級。伯克利大學研究目的是反應當時CPU快速的性能。CPU效能每年大約成長30~50%,而硬磁機只能成長約7%。研究小組希望能找出一種新的技術,在短期內,立即提升效能來平衡計算機的運算能力。在當時,柏克萊研究小組的主要研究目的是效能與成本。

另外,尺喊衫研究小組也設計出容錯(fault-tolerance),邏輯數據備份(logical data rendancy),而產生了RAID理論。研究初期,便宜(Inexpensive)的磁碟也是主要的重點,但後來發現,大量便宜磁碟組合並不能適用於現實的生產環境陵腔,後來Inexpensive被改為independent,許多獨立的磁碟組。

獨立磁碟冗餘陣列(RAID,rendant array of independent disks)是把相同的數據存儲在多個硬碟的不同的地方(因此,冗餘地)的方法。通過把數據放在多個硬碟上,輸入輸出操作能以平衡的方式交疊,改良性能。因為多個硬碟增加了平均故障間隔時間(MTBF),儲存冗餘數據也增加了容錯。

分類

磁碟陣列其樣式有三種,一是外接式磁碟陣列櫃、二是內接式磁碟陣列卡,三是利用軟體來模擬。

外接式磁碟陣列櫃最常被使用大型伺服器上,具可熱交換(Hot Swap)的特性,不過這類產品的價格都很貴。

內接式磁碟陣列卡,因為價格便宜,但需要較高的安裝技術,適合技術人員使用操作。硬體陣列能夠提供在線擴容、動態修改陣列級別、自動數據恢復、驅動器漫遊、超高速緩沖等功能。它能提供性能、數據保護、可靠性、可用性和可管理性的解決方案。陣列卡專用的處理單元來進行操作。

利用軟體模擬的方式,是指通過網路操作系統自身提供的磁碟管理功能將連接的普通SCSI卡上的多塊硬碟配置成邏輯盤,組成陣列。軟體陣列可以提供數據冗餘功能,但是磁碟子系統的性能會有所降低,有的降低幅度還比較大,達30%左右。因此會拖累機器的速度,不適合大數據流量的伺服器。

原理

磁碟陣列作為獨立系統在主機外直連或通過網路與主機相連。磁碟陣列有多個埠可以被不同主機或不同埠連接。一個主機連接陣列的不同埠可提升傳輸速度。

和當時PC用單磁碟內部集成緩存一樣,在磁碟陣列內部為加快與主機交互速度,都帶有一定量的緩沖存儲器。主機與磁碟陣列的緩存交互,緩存與具體的磁碟交互數據。

在應用中,有部分常用的數據是需要經常讀取的,磁碟陣列根據內部的演算法,查找出這些經常讀取的數據,存儲在緩存中,加快主機讀取這些數據的速度,而對於其他緩存中沒有的數據,主機要讀取,則由陣列從磁碟上直接讀取傳輸給主機。對於主機寫入的數據,只寫在緩存中,主機可以立即完成寫操作。然後由緩存再慢慢寫入磁碟。

優缺點

優點

提高傳輸速率。RAID通過在多個磁碟上同時存儲和讀取數據來大幅提高存儲系統的數據吞吐量(Throughput)。在RAID中,可以讓很多磁碟驅動器同時傳輸數據,而這些磁碟驅動器在邏輯上又是一個磁碟驅動器,所以使用RAID可以達到單個磁碟驅動器幾倍、幾十倍甚至上百倍的速率。這也是RAID最初想要解決的問題。因為當時CPU的速度增長很快,而磁碟驅動器的數據傳輸速率無法大幅提高,所以需要有一種方案解決二者之間的矛盾。RAID最後成功了。

通過數據校驗提供容錯功能。普通磁碟驅動器無法提供容錯功能,如果不包括寫在磁碟上的CRC(循環冗餘校驗)碼的話。RAID容錯是建立在每個磁碟驅動器的硬體容錯功能之上的,所以它提供更高的安全性。在很多RAID模式中都有較為完備的相互校驗/恢復的措施,甚至是直接相互的鏡像備份,從而大大提高了RAID系統的容錯度,提高了系統的穩定冗餘性。

缺點

RAID0沒有冗餘功能,如果一個磁碟(物理)損壞,則所有的數據都無法使用。

RAID1磁碟的利用率最高只能達到50%(使用兩塊盤的情況下),是所有RAID級別中最低的。

RAID0+1以理解為是RAID 0和RAID 1的折中方案。RAID 0+1可以為系統提供數據安全保障,但保障程度要比 Mirror低而磁碟空間利用率要比Mirror高。

RAID級別

1、RAID 0

RAID 0是最早出現的RAID模式,即Data Stripping數據分條技術。RAID 0是組建磁碟陣列中最簡單的一種形式,只需要2塊以上的硬碟即可,成本低,可以提高整個磁碟的性能和吞吐量。RAID 0沒有提供冗餘或錯誤修復能力,但實現成本是最低的。

RAID 0最簡單的實現方式就是把N塊同樣的硬碟用硬體的形式通過智能磁碟控制器或用操作系統中的磁碟驅動程序以軟體的方式串聯在一起創建一個大的卷集。在使用中電腦數據依次寫入到各塊硬碟中,它的最大優點就是可以整倍的提高硬碟的容量。如使用了三塊80GB的硬碟組建成RAID 0模式,那麼磁碟容量就會是240GB。其速度方面,各單獨一塊硬碟的速度完全相同。最大的缺點在於任何一塊硬碟出現故障,整個系統將會受到破壞,可靠性僅為單獨一塊硬碟的1/N。

為了解決這一問題,便出現了RAID 0的另一種模式。即在N塊硬碟上選擇合理的帶區來創建帶區集。其原理就是將原先順序寫入的數據被分散到所有的四塊硬碟中同時進行讀寫。四塊硬碟的並行操作使同一時間內磁碟讀寫的速度提升了4倍。

在創建帶區集時,合理的選擇帶區的大小非常重要。如果帶區過大,可能一塊磁碟上的帶區空間就可以滿足大部分的I/O操作,使數據的讀寫仍然只局限在少數的一、兩塊硬碟上,不能充分的發揮出並行操作的優勢。另一方面,如果帶區過小,任何I/O指令都可能引發大量的讀寫操作,佔用過多的控制器匯流排帶寬。因此,在創建帶區集時,我們應當根據實際應用的需要,慎重的選擇帶區的大小。

帶區集雖然可以把數據均勻的分配到所有的磁碟上進行讀寫。但如果我們把所有的硬碟都連接到一個控制器上的話,可能會帶來潛在的危害。這是因為當我們頻繁進行讀寫操作時,很容易使控制器或匯流排的負荷 超載。為了避免出現上述問題,建議用戶可以使用多個磁碟控制器。最好解決方法還是為每一塊硬碟都配備一個專門的磁碟控制器。

雖然RAID 0可以提供更多的空間和更好的性能,但是整個系統是非常不可靠的,如果出現故障,無法進行任何補救。所以,RAID 0一般只是在那些對數據安全性要求不高的情況下才被人們使用。[1]

2、RAID 1

RAID 1稱為磁碟鏡像,原理是把一個磁碟的數據鏡像到另一個磁碟上,也就是說數據在寫入一塊磁碟的同時,會在另一塊閑置的磁碟上生成鏡像文件,在不影響性能情況下最大限度的保證系統的可靠性和可修復性上,只要系統中任何一對鏡像盤中至少有一塊磁碟可以使用,甚至可以在一半數量的硬碟出現問題時系統都可以正常運行,當一塊硬碟失效時,系統會忽略該硬碟,轉而使用剩餘的鏡像盤讀寫數據,具備很好的磁碟冗餘能力。雖然這樣對數據來講絕對安全,但是成本也會明顯增加,磁碟利用率為50%,以四塊80GB容量的硬碟來講,可利用的磁碟空間僅為160GB。另外,出現硬碟故障的RAID系統不再可靠,應當及時的更換損壞的硬碟,否則剩餘的鏡像盤也出現問題,那麼整個系統就會崩潰。更換新盤後原有數據會需要很長時間同步鏡像,外界對數據的訪問不會受到影響,只是這時整個系統的性能有所下降。因此,RAID 1多用在保存關鍵性的重要數據的場合。

RAID 1主要是通過二次讀寫實現磁碟鏡像,所以磁碟控制器的負載也相當大,尤其是在需要頻繁寫入數據的環境中。為了避免出現性能瓶頸,使用多個磁碟控制器就顯得很有必要。

3、RAID0+1

從RAID 0+1名稱上我們便可以看出是RAID0與RAID1的結合體。在我們單獨使用RAID 1也會出現類似單獨使用RAID 0那樣的問題,即在同一時間內只能向一塊磁碟寫入數據,不能充分利用所有的資源。為了解決這一問題,我們可以在磁碟鏡像中建立帶區集。因為這種配置方式綜合了帶區集和鏡像的優勢,所以被稱為RAID 0+1。把RAID0和RAID1技術結合起來,數據除分布在多個盤上外,每個盤都有其物理鏡像盤,提供全冗餘能力,允許一個以下磁碟故障,而不影響數據可用性,並具有快速讀/寫能力。RAID0+1要在磁碟鏡像中建立帶區集至少4個硬碟。

4、RAID: LSI MegaRAID、Nytro和Syncro

MegaRAID、Nytro和Syncro都是LSI 針對RAID而推出的解決方案,並且一直在創造更新。

LSI MegaRAID的主要定位是保護數據,通過高性能、高可靠的RAID控制器功能,為數據提供高級別的保護。LSI MegaRAID在業界有口皆碑。

LSI Nytro的主要定位是數據加速,它充分利用當今備受追捧的快閃記憶體技術,極大地提高數據I/O速度。LSI Nytro包括三個系列:LSI Nytro WarpDrive加速卡、LSI Nytro XD 應用加速存儲解決方案和LSI Nytro MegaRAID 應用加速卡。Nytro MegaRAID主要用於DAS環境,Nytro WarpDrive加速卡主要用於SAN和NAS環境,Nytro XD解決方案由Nytro WarpDrive加速卡和Nytro XD 智能高速緩存軟體兩部分構成。

LSI Syncro的定位主要用於數據共享,提高系統的可用性、可擴展性,降低成本。

LSI通過MegaRAID提供基本的可靠性保障;通過Nytro實現加速;通過Syncro突破容量瓶頸,讓價格低廉的存儲解決方案可以大規模擴展,並且進一步提高可靠性。

5、RAID2:帶海明碼校驗

從概念上講,RAID 2 同RAID 3類似, 兩者都是將數據條塊化分布於不同的硬碟上, 條塊單位為位或位元組。然而RAID 2 使用一定的編碼技術來提供錯誤檢查及恢復。這種編碼技術需要多個磁碟存放檢查及恢復信息,使得RAID 2技術實施更復雜。因此,在商業環境中很少使用。下圖左邊的各個磁碟上是數據的各個位,由一個數據不同的位運算得到的海明校驗碼可以保存另一組磁碟上。由於海明碼的特點,它可以在數據發生錯誤的情況下將錯誤校正,以保證輸出的正確。它的數據傳送速率相當高,如果希望達到比較理想的速度,那最好提高保存校驗碼ECC碼的硬碟,對於控制器的設計來說,它又比RAID3,4或5要簡單。沒有免費的午餐,這里也一樣,要利用海明碼,必須要付出數據冗餘的代價。輸出數據的速率與驅動器組中速度最慢的相等。

6 、RAID3:帶奇偶校驗碼的並行傳送

這種校驗碼與RAID2不同,只能查錯不能糾錯。它訪問數據時一次處理一個帶區,這樣可以提高讀取和寫入速度。校驗碼在寫入數據時產生並保存在另一個磁碟上。需要實現時用戶必須要有三個以上的驅動器,寫入速率與讀出速率都很高,因為校驗位比較少,因此計算時間相對而言比較少。用軟體實現RAID控制將是十分困難的,控制器的實現也不是很容易。它主要用於圖形(包括動畫)等要求吞吐率比較高的場合。不同於RAID 2,RAID 3使用單塊磁碟存放奇偶校驗信息。如果一塊磁碟失效,奇偶盤及其他數據盤可以重新產生數據。 如果奇偶盤失效,則不影響數據使用。RAID 3對於大量的連續數據可提供很好的傳輸率,但對於隨機數據,奇偶盤會成為寫操作的瓶頸。

7、RAID4:帶奇偶校驗碼的獨立磁碟結構

RAID4和RAID3很象,不同的是,它對數據的訪問是按數據塊進行的,也就是按磁碟進行的,每次是一個盤。在圖上可以這么看,RAID3是一次一橫條,而RAID4一次一豎條。它的特點和RAID3也挺象,不過在失敗恢復時,它的難度可要比RAID3大得多了,控制器的設計難度也要大許多,而且訪問數據的效率不怎麼好。

8、RAID5:分布式奇偶校驗的獨立磁碟結構

從它的示意圖上可以看到,它的奇偶校驗碼存在於所有磁碟上,其中的p0代表第0帶區的奇偶校驗值,其它的意思也相同。RAID5的讀出效率很高,寫入效率一般,塊式的集體訪問效率不錯。因為奇偶校驗碼在不同的磁碟上,所以提高了可靠性。但是它對數據傳輸的並行性解決不好,而且控制器的設計也相當困難。RAID 3 與RAID 5相比,重要的區別在於RAID 3每進行一次數據傳輸,需涉及到所有的陣列盤。而對於RAID 5來說,大部分數據傳輸只對一塊磁碟操作,可進行並行操作。在RAID 5中有“寫損失”,即每一次寫操作,將產生四個實際的讀/寫操作,其中兩次讀舊的數據及奇偶信息,兩次寫新的數據及奇偶信息。

9、RAID6:帶有兩種分布存儲的奇偶校驗碼的獨立磁碟結構

名字很長,但是如果看到圖,大家立刻會明白是為什麼,請注意p0代表第0帶區的奇偶校驗值,而pA代表數據塊A的奇偶校驗值。它是對RAID5的擴展,主要是用於要求數據絕對不能出錯的場合。當然了,由於引入了第二種奇偶校驗值,所以需要N+2個磁碟,同時對控制器的設計變得十分復雜,寫入速度也不好,用於計算奇偶校驗值和驗證數據正確性所花費的時間比較多,造成了不必須的負載。我想除了軍隊沒有人用得起這種東西。

10、RAID7:優化的高速數據傳送磁碟結構

RAID7所有的I/O傳送均是同步進行的,可以分別控制,這樣提高了系統的並行性,提高系統訪問數據的速度;每個磁碟都帶有高速緩沖存儲器,實時操作系統可以使用任何實時操作晶元,達到不同實時系統的需要。允許使用SNMP協議進行管理和監視,可以對校驗區指定獨立的傳送信道以提高效率。可以連接多台主機,因為加入高速緩沖存儲器,當多用戶訪問系統時,訪問時間幾乎接近於0。由於採用並行結構,因此數據訪問效率大大提高。需要注意的是它引入了一個高速緩沖存儲器,這有利有弊,因為一旦系統斷電,在高速緩沖存儲器內的數據就會全部丟失,因此需要和UPS一起工作。當然了,這么快的東西,價格也非常昂貴。

11、RAID10:高可靠性與高效磁碟結構

這種結構無非是一個帶區結構加一個鏡象結構,因為兩種結構各有優缺點,因此可以相互補充,達到既高效又高速的目的。大家可以結合兩種結構的優點和缺點來理解這種新結構。這種新結構的價格高,可擴充性不好。主要用於數據容量不大,但要求速度和差錯控制的資料庫中。

12、RAID53:高效數據傳送磁碟結構

越到後面的結構就是對前面結構的一種重復和再利用,這種結構就是RAID3和帶區結構的統一,因此它速度比較快,也有容錯功能。但價格十分高,不易於實現。這是因為所有的數據必須經過帶區和按位存儲兩種方法,在考慮到效率的情況下,要求這些磁碟同步真是不容易。

❷ 存儲器的主要功能是什麼為什麼要把存儲系統分成若干個不同層次

一、存儲器的主要功能:

1、隨機存取存儲器(RAM)。

2、只讀存儲器(ROM)。

3、快閃記憶體(Flash Memory)。

4、先進先出存儲器(FIFO)。

5、先進後出存儲器(FILO)。

二、存儲器分為若干個層次主要原因:

1、合理解決速度與成本的矛盾,以得到較高的性能價格比。

磁碟存儲器價格較便宜,可以把容量做得很大,但存取速度較慢,因此用作存取次數較少,且需存放大量程序、原始數據(許多程序和數據是暫時不參加運算的)和運行結果的外存儲器。

2、使用磁碟作為外存,不僅價格便宜,可以把存儲容量做得很大,而且在斷電時它所存放的信息也不丟失,可以長久保存,且復制、攜帶都很方便。

(2)存儲系統的可擴展性級別擴展閱讀:

存儲器可做處理器,未來裝置有望更加輕薄短小:

有一群跨國研究團隊做了實驗,並真的成功運用存儲器執行一般電腦晶元的運算任務,倘若技術成熟,將有望使手機與電腦等裝置更加輕薄。

新加坡南洋理工大學、德國亞琛阿亨工業大學和歐洲最大的跨學科研究中心德國尤利希研究中心組成的研究團隊發現,在調整演演算法後,存儲器能如英特爾、高通等傳統處理器一般,進行運算處理。

目前市面上的裝置或電腦都是透過CPU從存儲器提取資訊進行運算處理,以二進制0跟1來實現指令,如字母A是用「01000001」這樣8位元的形式來處理或紀錄。而存儲器ReRAM透過不同電阻態代表0或1的數據狀態儲存資訊,其實還可實現更高基數的數據狀態記錄。

研究團隊就將ReRAM原型(prototype)調整為0、1、2的三進制,透過這樣的高基數運算系統可加速運算任務,並於存儲器就可進行邏輯運算。也節省了處理器與存儲器間數據傳輸的時間與功耗的消耗。

研究參與人之一、南洋理工大學資訊工程學系助理教授Chattopadhyay解釋,這就像一段很長的會話卻只用一個極小的翻譯器來轉換,是一段耗時且費力的過程,團隊所做的就是增加這個小型翻譯器的處理容量,使其能更有效的處理數據。

❸ 計算機的多級儲存系統系統的組成及優點

答:一、計算機的多級儲存系統的組成

1、最內層是CPU中的通用寄存器,很多運算可直接在CPU的通用寄存器中進行,減少了CPU與主存的數據交換,很好地解決了速度匹配的問題,但通用寄存器的數量是有限的一般在幾個到幾百個之間。

2、高速緩沖存儲器設置在CPU和主存之間,可以放在CPU 內部或外部。

3、以上兩層僅解決了速度匹配問題,存儲器的容量仍受到內存容量的制約。

因此,在多級存在儲結構中又增設了輔助存儲器(由磁碟構成)和大容量存儲器(由磁帶構成)。

二、計算機的多級儲存系統的優點

從CPU看來,這個整體的速度接近於Cache和寄存器的操作速度、容量是輔存的容量,每位價格接近於輔存的位價格。

從而較好地解決了存儲器中速度、容量、價格三者之間的矛盾,滿足了計算機系統的應用需要。

三、存儲層次

1、在計算機系統中存儲層次可分為高速緩沖存儲器、主存儲器、輔助存儲器三級。

2、高速緩沖存儲器用來改善主存儲器與中央處理器的速度匹配問題。

3、輔助存儲器用於擴大存儲空間。

❹ 什麼是分布式存儲系統

分布式存儲系統,是將數據分散存儲在多台獨立的設備上。傳統的網路存儲系統採用集中的存儲伺服器存放所有數據,存儲伺服器成為系統性能的瓶頸,也是可靠性和安全性的焦點,不能滿足大規模存儲應用的需要。分布式網路存儲系統採用可擴展的系統結構,利用多台存儲伺服器分擔存儲負荷,利用位置伺服器定位存儲信息,它不但提高了系統的可靠性、可用性和存取效率,還易於擴展。


(4)存儲系統的可擴展性級別擴展閱讀:

分布式存儲,集中管理,在這個方案中,共有三級:

1、上級監控中心:上級監控中心通常只有一個,主要由數字矩陣、認證伺服器和VSTARClerk軟體等。

2、本地監控中心:本地監控中心可以有多個,可依據地理位置設置,或者依據行政隸屬關系設立,主要由數字矩陣、流媒體網關、iSCSI存儲設備、VSTARRecorder軟體等組成;音視頻的數據均主要保存在本地監控中心,這就是分布式存儲的概念。

3、監控前端:主要由攝像頭、網路視頻伺服器組成,其中VE4000系列的網路視頻伺服器可以帶硬碟,該硬碟主要是用於網路不暢時,暫時對音視頻數據進行保存,或者需要在前端保存一些重要數據的情況。

❺ 計算機存儲系統分為哪幾個層次

在計算機系統中存儲層次可分為高速緩沖存儲器、主存儲器、輔助存儲器三級。高速緩沖存儲器用來改善主存儲器與中央處理器的速度匹配問題。輔助存儲器用於擴大存儲空間。

存儲系統的性能在計算機中的地位日趨重要,主要原因是:

1、馮諾伊曼體系結構是建築在存儲程序概念的基礎上,訪存操作約佔中央處理器(CPU)時間的70%左右。

2、存儲管理與組織的好壞影響到整機效率。

3、現代的信息處理,如圖像處理、資料庫、知識庫、語音識別、多媒體等對存儲系統的要求很高。

(5)存儲系統的可擴展性級別擴展閱讀:

移動存儲特點:

1、獲國家保密局認證,安全可靠;

2、與加密系統無縫結合,防護能力倍增;

3、 國內首創,將普通U盤變為加密U盤,徹底解決U盤的方便性帶來的風險;

4、 採用雙因子認證技術;

5、專用加密移動存儲與系統無縫結合,管理更流暢;

6、功能多樣,可滿足各種不同需求的保密要求;

7、 完善的審計功能,隨時掌握U盤持有人的行為。

移動存儲功能:

1、集中注冊與授權。可通過注冊信息實現U盤身份識別和介質追蹤;

2、主機身份認證。所有安裝客戶端的計算機都須經管理員分配實名信息後方可使用;

3、加密上鎖。對加密上鎖後的U盤需要用戶進行身份認證;

4、訪問控制。可靈活控制移動存儲介質注冊策略和信息,設定允許使用的計算機或租;

5、外出拷貝。拷入U盤內的數據可與外界的計算機進行數據交互使用,也可實現定向拷貝;

6、用戶審計。移動管理存儲系統提供詳細的審計記錄及審計報告。

主存儲器:

存放指令和數據,並能由中央處理器直接隨機存取的存儲器,有時也稱操作存儲器或初級存儲器。主存儲器的特點是速度比輔助存儲器快,容量比高速緩沖存儲器大。

計算機存儲介質:

計算機存儲介質是計算機存儲器中用於存儲某種不連續物理量的媒體。計算機存儲介質主要有半導體、磁芯、磁鼓、磁帶、激光碟等。

❻ 什麼是分級的存儲體系結構它主要解決了什麼問題

分級存儲是將數據採取不同的存儲方式分別存儲在不同性能的存儲設備上,減少非重要性數據在一級本地磁碟所佔用的空間,還可加快整個系統的存儲性能。分級存儲是根據數據的重要性、訪問頻率、保留時間、容量、性能等指標,將數據採取不同的存儲方式分別存儲在不同性能的存儲設備上,通過分級存儲管理實現數據客體在存儲設備之間的自動遷移。

數據分級存儲的工作原理是基於數據訪問的局部性。通過將不經常訪問的數據自動移到存儲層次中較低的層次,釋放出較高成本的存儲空間給更頻繁訪問的數據,可以獲得更好的性價比。這樣,一方面可大大減少非重要性數據在一級本地磁碟所佔用的空間,還可加快整個系統的存儲性能。

(6)存儲系統的可擴展性級別擴展閱讀

在分級數據存儲結構中,存儲設備一般有磁帶庫、磁碟或磁碟陣列等,而磁碟又可以根據其性能分為FC磁碟、SCSI磁碟、SATA磁碟等多種,而快閃記憶體存儲介質(非易失隨機訪問存儲器(NVRAM))也因為較高的性能可以作為分級數據存儲結構中較高的一級。一般,磁碟或磁碟陣列等成本高、速度快的設備,用來存儲經常訪問的重要信息,而磁帶庫等成本較低的存儲資源用來存放訪問頻率較低的信息。

信息生命周期管理(Information Lifecycle Management,ILM)是StorageTek公司針對不斷變化的存儲環境推出的先進存儲管理理念,ILM試圖實現根據數據在整個生命周期過程中不斷變化的數據訪問需求而進行數據的動態分布。

分級存儲和ILM在存儲體系結構上基本相同,目標也都是使不同級別的數據在給定時間和不同級別的存儲資源能夠更好的匹配。二者本質差別是數據分級的標准不同:前者標准為數據近期被訪問的概率;後者標准為數據近期對企業的價值。

熱點內容
預編譯查詢 發布:2024-11-28 05:32:35 瀏覽:312
山東青島iptv設置密碼是多少 發布:2024-11-28 05:30:26 瀏覽:315
小鵬的解壓 發布:2024-11-28 05:10:07 瀏覽:21
ibm存儲售後 發布:2024-11-28 05:00:39 瀏覽:32
python監控進程腳本 發布:2024-11-28 04:54:47 瀏覽:180
android載入html頁面 發布:2024-11-28 04:54:38 瀏覽:901
噻苯隆如何配置 發布:2024-11-28 04:53:56 瀏覽:395
普通電腦改伺服器風道風罩 發布:2024-11-28 04:52:28 瀏覽:454
什麼安卓手機像8p一樣 發布:2024-11-28 04:43:17 瀏覽:225
連接資料庫參數 發布:2024-11-28 04:43:15 瀏覽:808