當前位置:首頁 » 存儲配置 » 信息存儲的應用

信息存儲的應用

發布時間: 2024-01-06 05:17:53

❶ 有關現代與古代在信息儲存用的方法

1、信息儲存是將獲得的或加工後的信息保存起來,以備將來應用。信息儲存和數據儲存應用的設備是相同的,但信息儲存搶跳儲存的思路,為什麼要儲存這些數據,以什麼方式儲存這些數據、存在什麼介質上,將來有什麼用處,對決策可能產生的效果是什麼等。只有正確的舍棄信息,才能正確使用信息
2.、①古代信息儲存方法:結繩記事、石頭代替法、在洞穴岩壁上繪畫。之後,中國:竹簡、木簡、金屬容器表面、帛、絲綢、蔡倫造紙。用這載體,用「以物記物」或「借物記物"即用更易於攜帶的事物代替所要記錄的事物,但古時所有的「物」都是現實意義上的物。
②當時較為先進的是使用甲骨文在動物殼身上記錄文字,存儲信息。後來蔡倫發明造紙術,人們就開始在紙張上記錄文字用以儲存信息。
3、、現代信息儲存方法:
①紙優點:存量大,體積小,便宜,永久保存性好,並有不易塗改性。存數字、文字和圖像一樣容易。
缺點:傳送信息慢,檢索起來不方便
②膠卷優點:存儲密度大。查詢容易
缺點:閱讀時必須通過介面設備,不方便,價格昂貴。
③計算機
優點:存取速度極快,存儲的數據量大
信息存儲應當決定,什麼信息存在什麼介質行比較合適。總的來說憑證文件應當用紙介質存儲;業務文件用紙或磁帶存儲;而主文件,如企業中企業結構;人事方面的檔案材料;設備或材料的庫存賬目,應當存於磁碟,以便聯機檢索和查詢
計算機儲存方面也包括三種:磁存儲技術(例如硬碟)、縮微存儲技術(例如膠卷)、光碟存儲技術)(例如CD—ROM)。

❷ 大數據存儲與應用特點及技術路線分析

大數據存儲與應用特點及技術路線分析

大數據時代,數據呈爆炸式增長。從存儲服務的發展趨勢來看,一方面,對數據的存儲量的需求越來越大;另一方面,對數據的有效管理提出了更高的要求。大數據對存儲設備的容量、讀寫性能、可靠性、擴展性等都提出了更高的要求,需要充分考慮功能集成度、數據安全性、數據穩定性,系統可擴展性、性能及成本各方面因素。

大數據存儲與應用的特點分析

「大數據」是由數量巨大、結構復雜、類型眾多數據構成的數據集合,是基於雲計算的數據處理與應用模式,通過數據的整合共享,交叉復用形成的智力資源和知識服務能力。其常見特點可以概括為3V:Volume、Velocity、Variety(規模大、速度快、多樣性)。

大數據具有數據規模大(Volume)且增長速度快的特性,其數據規模已經從PB級別增長到EB級別,並且仍在不斷地根據實際應用的需求和企業的再發展繼續擴容,飛速向著ZB(ZETA-BYTE)的規模進軍。以國內最大的電子商務企業淘寶為例,根據淘寶網的數據顯示,至2011年底,淘寶網最高單日獨立用戶訪問量超過1.2億人,比2010年同期增長120%,注冊用戶數量超過4億,在線商品數量達到8億,頁面瀏覽量達到20億規模,淘寶網每天產生4億條產品信息,每天活躍數據量已經超過50TB.所以大數據的存儲或者處理系統不僅能夠滿足當前數據規模需求,更需要有很強的可擴展性以滿足快速增長的需求。

(1)大數據的存儲及處理不僅在於規模之大,更加要求其傳輸及處理的響應速度快(Velocity)。

相對於以往較小規模的數據處理,在數據中心處理大規模數據時,需要服務集群有很高的吞吐量才能夠讓巨量的數據在應用開發人員「可接受」的時間內完成任務。這不僅是對於各種應用層面的計算性能要求,更加是對大數據存儲管理系統的讀寫吞吐量的要求。例如個人用戶在網站選購自己感興趣的貨物,網站則根據用戶的購買或者瀏覽網頁行為實時進行相關廣告的推薦,這需要應用的實時反饋;又例如電子商務網站的數據分析師根據購物者在當季搜索較為熱門的關鍵詞,為商家提供推薦的貨物關鍵字,面對每日上億的訪問記錄要求機器學習演算法在幾天內給出較為准確的推薦,否則就丟失了其失效性;更或者是計程車行駛在城市的道路上,通過GPS反饋的信息及監控設備實時路況信息,大數據處理系統需要不斷地給出較為便捷路徑的選擇。這些都要求大數據的應用層可以最快的速度,最高的帶寬從存儲介質中獲得相關海量的數據。另外一方面,海量數據存儲管理系統與傳統的資料庫管理系統,或者基於磁帶的備份系統之間也在發生數據交換,雖然這種交換實時性不高可以離線完成,但是由於數據規模的龐大,較低的數據傳輸帶寬也會降低數據傳輸的效率,而造成數據遷移瓶頸。因此大數據的存儲與處理的速度或是帶寬是其性能上的重要指標。

(2)大數據由於其來源的不同,具有數據多樣性的特點。

所謂多樣性,一是指數據結構化程度,二是指存儲格式,三是存儲介質多樣性。對於傳統的資料庫,其存儲的數據都是結構化數據,格式規整,相反大數據來源於日誌、歷史數據、用戶行為記錄等等,有的是結構化數據,而更多的是半結構化或者非結構化數據,這也正是傳統資料庫存儲技術無法適應大數據存儲的重要原因之一。所謂存儲格式,也正是由於其數據來源不同,應用演算法繁多,數據結構化程度不同,其格式也多種多樣。例如有的是以文本文件格式存儲,有的則是網頁文件,有的是一些被序列化後的比特流文件等等。所謂存儲介質多樣性是指硬體的兼容,大數據應用需要滿足不同的響應速度需求,因此其數據管理提倡分層管理機制,例如較為實時或者流數據的響應可以直接從內存或者Flash(SSD)中存取,而離線的批處理可以建立在帶有多塊磁碟的存儲伺服器上,有的可以存放在傳統的SAN或者NAS網路存儲設備上,而備份數據甚至可以存放在磁帶機上。因而大數據的存儲或者處理系統必須對多種數據及軟硬體平台有較好的兼容性來適應各種應用演算法或者數據提取轉換與載入(ETL)。

大數據存儲技術路線最典型的共有三種:

第一種是採用MPP架構的新型資料庫集群,重點面向行業大數據,採用Shared Nothing架構,通過列存儲、粗粒度索引等多項大數據處理技術,再結合MPP架構高效的分布式計算模式,完成對分析類應用的支撐,運行環境多為低成本 PC Server,具有高性能和高擴展性的特點,在企業分析類應用領域獲得極其廣泛的應用。

這類MPP產品可以有效支撐PB級別的結構化數據分析,這是傳統資料庫技術無法勝任的。對於企業新一代的數據倉庫和結構化數據分析,目前最佳選擇是MPP資料庫。

第二種是基於Hadoop的技術擴展和封裝,圍繞Hadoop衍生出相關的大數據技術,應對傳統關系型資料庫較難處理的數據和場景,例如針對非結構化數據的存儲和計算等,充分利用Hadoop開源的優勢,伴隨相關技術的不斷進步,其應用場景也將逐步擴大,目前最為典型的應用場景就是通過擴展和封裝 Hadoop來實現對互聯網大數據存儲、分析的支撐。這裡面有幾十種NoSQL技術,也在進一步的細分。對於非結構、半結構化數據處理、復雜的ETL流程、復雜的數據挖掘和計算模型,Hadoop平台更擅長。

第三種是大數據一體機,這是一種專為大數據的分析處理而設計的軟、硬體結合的產品,由一組集成的伺服器、存儲設備、操作系統、資料庫管理系統以及為數據查詢、處理、分析用途而特別預先安裝及優化的軟體組成,高性能大數據一體機具有良好的穩定性和縱向擴展性。

以上是小編為大家分享的關於大數據存儲與應用特點及技術路線分析的相關內容,更多信息可以關注環球青藤分享更多干貨

熱點內容
安卓系統的哪個平板吃雞好 發布:2025-01-20 20:13:24 瀏覽:555
go語言編譯模式 發布:2025-01-20 19:57:25 瀏覽:405
超能編程 發布:2025-01-20 19:56:26 瀏覽:1000
安卓手機怎麼連藍牙汽車 發布:2025-01-20 19:39:05 瀏覽:253
保定軍工存儲廠家 發布:2025-01-20 19:38:53 瀏覽:795
雲伺服器ecs服務條款 發布:2025-01-20 19:19:36 瀏覽:47
安卓系統顯示屏怎麼設置屏保 發布:2025-01-20 19:18:53 瀏覽:896
有鎖機和配置鎖哪個好 發布:2025-01-20 19:18:05 瀏覽:767
安卓版軟體如何設置 發布:2025-01-20 18:58:53 瀏覽:58
java中級項目案例 發布:2025-01-20 18:58:52 瀏覽:913