當前位置:首頁 » 存儲配置 » 大數據實時存儲

大數據實時存儲

發布時間: 2023-12-23 23:02:02

① 大數據時代,數據的存儲與管理有哪些要求

數據時代的到來,數據的存儲有以下主要要求:
首先,海量數據被及時有效地存儲。根據現行技術和預防性法規和標准,系統採集的信息的保存時間不少於30天。數據量隨時間的增加而線性增加。

其次,數據存儲系統需要具有可擴展性,不僅要滿足海量數據的不斷增長,還要滿足獲取更高解析度或更多採集點的數據需求。

第三,存儲系統的性能要求很高。在多通道並發存儲的情況下,它對帶寬,數據容量,高速緩存等有很高的要求,並且需要針對視頻性能進行優化。

第四,大數據應用需要對數據存儲進行集中管理分析。

② 什麼是大數據存儲管理

1.分布式存儲

傳統化集中式存儲存在已有一段時間。但大數據並非真的適合集中式存儲架構。Hadoop設計用於將計算更接近數據節點,同時採用了HDFS文件系統的大規模橫向擴展功能。

雖然,通常解決Hadoop管理自身數據低效性的方案是將Hadoop 數據存儲在SAN上。但這也造成了它自身性能與規模的瓶頸。現在,如果你把所有的數據都通過集中式SAN處理器進行處理,與Hadoop的分布式和並行化特性相悖。你要麼針對不同的數據節點管理多個SAN,要麼將所有的數據節點都集中到一個SAN。

但Hadoop是一個分布式應用,就應該運行在分布式存儲上,這樣存儲就保留了與Hadoop本身同樣的靈活性,不過它也要求擁抱一個軟體定義存儲方案,並在商用伺服器上運行,這相比瓶頸化的Hadoop自然更為高效。

2.超融合VS分布式

注意,不要混淆超融合與分布式。某些超融合方案是分布式存儲,但通常這個術語意味著你的應用和存儲都保存在同一計算節點上。這是在試圖解決數據本地化的問題,但它會造成太多資源爭用。這個Hadoop應用和存儲平台會爭用相同的內存和CPU。Hadoop運行在專有應用層,分布式存儲運行在專有存儲層這樣會更好。之後,利用緩存和分層來解決數據本地化並補償網路性能損失。

3.避免控制器瓶頸(Controller Choke Point)

實現目標的一個重要方面就是——避免通過單個點例如一個傳統控制器來處理數據。反之,要確保存儲平台並行化,性能可以得到顯著提升。

此外,這個方案提供了增量擴展性。為數據湖添加功能跟往裡面扔x86伺服器一樣簡單。一個分布式存儲平台如有需要將自動添加功能並重新調整數據。

4.刪重和壓縮

掌握大數據的關鍵是刪重和壓縮技術。通常大數據集內會有70%到90%的數據簡化。以PB容量計,能節約數萬美元的磁碟成本。現代平台提供內聯(對比後期處理)刪重和壓縮,大大降低了存儲數據所需能力。

5.合並Hadoop發行版

很多大型企業擁有多個Hadoop發行版本。可能是開發者需要或是企業部門已經適應了不同版本。無論如何最終往往要對這些集群的維護與運營。一旦海量數據真正開始影響一家企業時,多個Hadoop發行版存儲就會導致低效性。我們可以通過創建一個單一,可刪重和壓縮的數據湖獲取數據效率

6.虛擬化Hadoop

虛擬化已經席捲企業級市場。很多地區超過80%的物理伺服器現在是虛擬化的。但也仍有很多企業因為性能和數據本地化問題對虛擬化Hadoop避而不談。

7.創建彈性數據湖

創建數據湖並不容易,但大數據存儲可能會有需求。我們有很多種方法來做這件事,但哪一種是正確的?這個正確的架構應該是一個動態,彈性的數據湖,可以以多種格式(架構化,非結構化,半結構化)存儲所有資源的數據。更重要的是,它必須支持應用不在遠程資源上而是在本地數據資源上執行。

不幸的是,傳統架構和應用(也就是非分布式)並不盡如人意。隨著數據集越來越大,將應用遷移到數據不可避免,而因為延遲太長也無法倒置。

理想的數據湖基礎架構會實現數據單一副本的存儲,而且有應用在單一數據資源上執行,無需遷移數據或製作副本

8.整合分析

分析並不是一個新功能,它已經在傳統RDBMS環境中存在多年。不同的是基於開源應用的出現,以及資料庫表單和社交媒體,非結構化數據資源(比如,維基網路)的整合能力。關鍵在於將多個數據類型和格式整合成一個標準的能力,有利於更輕松和一致地實現可視化與報告製作。合適的工具也對分析/商業智能項目的成功至關重要。

9. 大數據遇見大視頻

大數據存儲問題已經讓人有些焦頭爛額了,現在還出現了大視頻現象。比如,企業為了安全以及操作和工業效率逐漸趨於使用視頻監控,簡化流量管理,支持法規遵從性和幾個其它的使用案例。很短時間內這些資源將產生大量的內容,大量必須要處理的內容。如果沒有專業的存儲解決方案很可能會導致視頻丟失和質量降低的問題。

10.沒有絕對的贏家

Hadoop的確取得了一些進展。那麼隨著大數據存儲遍地開花,它是否會成為贏家,力壓其它方案,其實不然。

比如,基於SAN的傳統架構在短期內不可取代,因為它們擁有OLTP,100%可用性需求的內在優勢。所以最理想的辦法是將超融合平台與分布式文件系統和分析軟體整合在一起。而成功的最主要因素則是存儲的可擴展性因素。

③ 大數據服務平台是什麼有什麼用

而大數據服務平台則是一個集數據接入、數據處理、數據存儲、查詢檢索、分析挖掘等、應用介面等為一體的平台,然後通過在線的方式來提供數據資源、數據能力等來驅動業務發展的服務。

計算機俗稱電腦,是一種用於高速計算的電子計算機器,可以進行數值計算,又可以進行邏輯計算,還具有存儲記憶功能。是能夠按照程序運行,自動、高速處理海量數據的現代化智能電子設備。由硬體系統和軟體系統所組成,沒有安裝任何軟體的計算機稱為裸機。

可分為超級計算機、工業控制計算機、網路計算機、個人計算機、嵌入式計算機五類,較先進的計算機有生物計算機、光子計算機、量子計算機、神經網路計算機。蛋白質計算機等。

當今計算機系統的運算速度已達到每秒萬億次,微機也可達每秒幾億次以上,使大量復雜的科學計算問題得以解決。例如:衛星軌道的計算、大型水壩的計算、24小時天氣預報的計算等,過去人工計算需要幾年、幾十年,而現在用計算機只需幾天甚至幾分鍾就可完成。

科學技術的發展特別是尖端科學技術的發展,需要高度精確的計算。計算機控制的導彈之所以能准確地擊中預定的目標,是與計算機的精確計算分不開的。一般計算機可以有十幾位甚至幾十位(二進制)有效數字,計算精度可由千分之幾到百萬分之幾,是任何計算工具所望塵莫及的。

隨著計算機存儲容量的不斷增大,可存儲記憶的信息越來越多。計算機不僅能進行計算,而且能把參加運算的數據、程序以及中間結果和最後結果保存起來,以供用戶隨時調用;還可以對各種信息(如視頻、語言、文字、圖形、圖像、音樂等)通過編碼技術進行算術運算和邏輯運算,甚至進行推理和證明。

計算機內部操作是根據人們事先編好的程序自動控制進行的。用戶根據解題需要,事先設計好運行步驟與程序,計算機十分嚴格地按程序規定的步驟操作,整個過程不需人工干預,自動執行,已達到用戶的預期結果。

超級計算機(supercomputers)通常是指由數百數千甚至更多的處理器(機)組成的、能計算普通PC機和伺服器不能完成的大型復雜課題的計算機。超級計算機是計算機中功能最強、運算速度最快、存儲容量最大的一類計算機,是國家科技發展水平和綜合國力的重要標志。

超級計算機擁有最強的並行計算能力,主要用於科學計算。在氣象、軍事、能源、航天、探礦等領域承擔大規模、高速度的計算任務。

在結構上,雖然超級計算機和伺服器都可能是多處理器系統,二者並無實質區別,但是現代超級計算機較多採用集群系統,更注重浮點運算的性能,可看著是一種專注於科學計算的高性能伺服器,而且價格非常昂貴。

一般的超級計算器耗電量相當大,一秒鍾電費就要上千,超級計算器的CPU至少50核也就是說是家用電腦的10倍左右,處理速度也是相當的快,但是這種CPU是無法購買的,而且價格要上千萬。

④ 大數據爆發性增長 存儲技術面臨難題

大數據爆發性增長 存儲技術面臨難題

隨著大數據應用的爆發性增長,大數據已經衍生出了自己獨特的架構,而且也直接推動了存儲、網路以及計算技術的發展。畢竟處理大數據這種特殊的需求是一個新的挑戰。硬體的發展最終還是由軟體需求推動的。大數據本身意味著非常多需要使用標准存儲技術來處理的數據。大數據可能由TB級(或者甚至PB級)信息組成,既包括結構化數據(資料庫、日誌、sql等)以及非結構化數據(社交媒體帖子、感測器、多媒體數據)。此外,大部分這些數據缺乏索引或者其他組織結構,可能由很多不同文件類型組成。從目前技術發展的情況來看,大數據存儲技術的發展正面臨著以下幾個難題:

1、容量問題

這里所說的「大容量」通常可達到PB級的數據規模,因此,海量數據存儲系統也一定要有相應等級的擴展能力。與此同時,存儲系統的擴展一定要簡便,可以通過增加模塊或磁碟櫃來增加容量,甚至不需要停機。

「大數據」應用除了數據規模巨大之外,還意味著擁有龐大的文件數量。因此如何管理文件系統層累積的元數據是一個難題,處理不當的話會影響到系統的擴展能力和性能,而傳統的NAS系統就存在這一瓶頸。所幸的是,基於對象的存儲架構就不存在這個問題,它可以在一個系統中管理十億級別的文件數量,而且還不會像傳統存儲一樣遭遇元數據管理的困擾。基於對象的存儲系統還具有廣域擴展能力,可以在多個不同的地點部署並組成一個跨區域的大型存儲基礎架構。

2、延遲問題

「大數據」應用還存在實時性的問題。有很多「大數據」應用環境需要較高的IOPS性能,比如HPC高性能計算。此外,伺服器虛擬化的普及也導致了對高IOPS的需求,正如它改變了傳統IT環境一樣。為了迎接這些挑戰,各種模式的固態存儲設備應運而生,小到簡單的在伺服器內部做高速緩存,大到全固態介質的可擴展存儲系統等等都在蓬勃發展。

3、並發訪問

一旦企業認識到大數據分析應用的潛在價值,他們就會將更多的數據集納入系統進行比較,同時讓更多的人分享並使用這些數據。為了創造更多的商業價值,企業往往會綜合分析那些來自不同平台下的多種數據對象。包括全局文件系統在內的存儲基礎設施就能夠幫助用戶解決數據訪問的問題,全局文件系統允許多個主機上的多個用戶並發訪問文件數據,而這些數據則可能存儲在多個地點的多種不同類型的存儲設備上。

4、安全問題

某些特殊行業的應用,比如金融數據、醫療信息以及政府情報等都有自己的安全標准和保密性需求。雖然對於IT管理者來說這些並沒有什麼不同,而且都是必須遵從的,但是,大數據分析往往需要多類數據相互參考,而在過去並不會有這種數據混合訪問的情況,因此大數據應用也催生出一些新的、需要考慮的安全性問題。

5、成本問題

成本問題「大」,也可能意味著代價不菲。而對於那些正在使用大數據環境的企業來說,成本控制是關鍵的問題。想控製成本,就意味著我們要讓每一台設備都實現更高的「效率」,同時還要減少那些昂貴的部件。

對成本控制影響最大的因素是那些商業化的硬體設備。因此,很多初次進入這一領域的用戶以及那些應用規模最大的用戶都會定製他們自己的「硬體平台」而不是用現成的商業產品,這一舉措可以用來平衡他們在業務擴展過程中的成本控制戰略。為了適應這一需求,現在越來越多的存儲產品都提供純軟體的形式,可以直接安裝在用戶已有的、通用的或者現成的硬體設備上。此外,很多存儲軟體公司還在銷售以軟體產品為核心的軟硬一體化裝置,或者與硬體廠商結盟,推出合作型產品。

6、數據的積累

許多大數據應用都會涉及到法規遵從問題,這些法規通常要求數據要保存幾年或者幾十年。比如醫療信息通常是為了保證患者的生命安全,而財務信息通常要保存7年。而有些使用大數據存儲的用戶卻希望數據能夠保存更長的時間,因為任何數據都是歷史記錄的一部分,而且數據的分析大都是基於時間段進行的。要實現長期的數據保存,就要求存儲廠商開發出能夠持續進行數據一致性檢測的功能以及其他保證長期高可用的特性。同時還要實現數據直接在原位更新的功能需求。

7、數據的靈活性

大數據存儲系統的基礎設施規模通常都很大,因此必須經過仔細設計,才能保證存儲系統的靈活性,使其能夠隨著應用分析軟體一起擴容及擴展。在大數據存儲環境中,已經沒有必要再做數據遷移了,因為數據會同時保存在多個部署站點。一個大型的數據存儲基礎設施一旦開始投入使用,就很難再調整了,因此它必須能夠適應各種不同的應用類型和數據場景。

存儲介質正在改變,雲計算倍受青睞

存儲之於安防的地位,其已經不僅是一個設備而已,而是已經升華到了一個解決方案平台的地步。作為圖像數據和報警事件記錄的載體,存儲的重要性是不言而喻的。

安防監控應用對存儲的需求是什麼?首先,海量存儲的需求。其次,性能的要求。第三,價格的敏感度。第四,集中管理的要求。第五,網路化要求。安防監控技術發展到今天經歷了三個階段,即:模擬化、數字化、網路化。與之相適應,監控數據存儲也經歷了多個階段,即:VCR模擬數據存儲、DVR數字數據存儲,到現在的集中網路存儲,以及發展到雲存儲階段,正是在一步步迎合這種市場需求。在未來,安防監控隨著高清化,網路化,智能化的不斷發展,將對現有存儲方案帶來不斷挑戰,包括容量、帶寬的擴展問題和管理問題。那麼,基於大數據戰略的海量存儲系統--雲存儲就倍受青睞了。

基於大數據戰略的安防存儲優勢明顯

當前社會對於數據的依賴是前所未有的,數據已變成與硬資產和人同等重要的重要資料。如何存好、保護好、使用好這些海量的大數據,是安防行業面臨的重要問題之一。那麼基於大數據戰略的安防存儲其優勢何在?

目前的存儲市場上,原有的視頻監控方案容量、帶寬難以擴展。客戶往往需要采購更多更高端的設備來擴充容量,提高性能,隨之帶來的是成本的急劇增長以及系統復雜性的激增。同時,傳統的存儲模式很難在完全沒有業務停頓的情況下進行升級,擴容會對業務帶來巨大影響。其次,傳統的視頻監控方案難於管理。由於視頻監控系統一般規模較大,分布特徵明顯,大多獨立管理,這樣就把整個系統分割成了多個管理孤島,相互之間通信困難,難以協調工作,以提高整體性能。除此之外,綠色、安全等也是傳統視頻監控方案所面臨的突出問題。

基於大數據戰略的雲存儲技術與生俱來的高擴展、易管理、高安全等特性為傳統存儲面臨的問題帶來了解決的契機。利用雲存儲,用戶可以方便的進行容量、帶寬擴展,而不必停止業務,或改變系統架構。同時,雲存儲還具有高安全、低成本、綠色節能等特點。基於雲存儲的視頻監控解決方案是客戶應對挑戰很好的選擇。王宇說,進入二十一世紀,雲存儲作為一種新的存儲架構,已逐步走入應用階段,雲存儲不僅輕松突破了SAN的性能瓶頸,而且可以實現性能與容量的線性擴展,這對於擁有大量數據的安防監控用戶來說是一個新選擇。

以英特爾推出的Hadoop分布式文件系統(HDFS)為例,其提供了一個高度容錯性和高吞吐量的海量數據存儲解決方案。目前已經在各種大型在線服務和大型存儲系統中得到廣泛應用,已經成為海量數據存儲的事實標准。

隨著信息系統的快速發展,海量的信息需要可靠存儲的同時,還能被大量的使用者快速地訪問。傳統的存儲方案已經從構架上越來越難以適應近幾年來的信息系統業務的飛速發展,成為了業務發展的瓶頸和障礙。HDFS通過一個高效的分布式演算法,將數據的訪問和存儲分布在大量伺服器之中,在可靠地多備份存儲的同時還能將訪問分布在集群中的各個伺服器之上,是傳統存儲構架的一個顛覆性的發展。最重要的是,其可以滿足以下特性:可自我修復的分布式文件存儲系統,高可擴展性,無需停機動態擴容,高可靠性,數據自動檢測和復制,高吞吐量訪問,消除訪問瓶頸,使用低成本存儲和伺服器構建。

以上是小編為大家分享的關於大數據爆發性增長 存儲技術面臨難題的相關內容,更多信息可以關注環球青藤分享更多干貨

⑤ 大數據平台是什麼什麼時候需要大數據平台如何建立大數據平台

首先我們要了解java語言和Linux操作系統,這兩個是學習大數據的基礎,學習的順序不分前後。

Java :只要了解一些基礎即可,做大數據不需要很深的Java 技術,學java SE 就相當於有學習大數據基礎。

Linux:因為大數據相關軟體都是在Linux上運行的,所以Linux要學習的扎實一些,學好Linux對你快速掌握大數據相關技術會有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數據軟體的運行環境和網路環境配置,能少踩很多坑,學會shell就能看懂腳本這樣能更容易理解和配置大數據集群。還能讓你對以後新出的大數據技術學習起來更快。

Hadoop:這是現在流行的大數據處理平台幾乎已經成為大數據的代名詞,所以這個是必學的。Hadoop裡麵包括幾個組件HDFS、MapRece和YARN,HDFS是存儲數據的地方就像我們電腦的硬碟一樣文件都存儲在這個上面,MapRece是對數據進行處理計算的,它有個特點就是不管多大的數據只要給它時間它就能把數據跑完,但是時間可能不是很快所以它叫數據的批處理。

Zookeeper:這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟體對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。

Mysql:我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql資料庫,因為一會裝hive的時候要用到,mysql需要掌握到什麼層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的許可權,修改root的密碼,創建資料庫。這里主要的是學習SQL的語法,因為hive的語法和這個非常相似。

Sqoop:這個是用於把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要注意Mysql的壓力。

Hive:這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapRece程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。

Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。

Hbase:這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。

Kafka:這是個比較好用的隊列工具,隊列是干嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你干嗎給我這么多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。

Spark:它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。

熱點內容
melpython 發布:2024-11-28 22:49:54 瀏覽:210
伺服器瀏覽量什麼意思 發布:2024-11-28 22:49:09 瀏覽:964
可不可以同時安裝幾個編譯器 發布:2024-11-28 22:34:08 瀏覽:934
蘋果配置鎖如何激活 發布:2024-11-28 22:10:24 瀏覽:668
linuxpython2與3共存 發布:2024-11-28 21:43:41 瀏覽:905
短視頻平台上傳視頻規范 發布:2024-11-28 21:41:22 瀏覽:554
c語言統計素數的個數 發布:2024-11-28 21:38:24 瀏覽:838
我的世界伺服器管理員沒了怎麼辦 發布:2024-11-28 21:37:22 瀏覽:184
請求分段存儲 發布:2024-11-28 21:23:20 瀏覽:459
zip偽加密 發布:2024-11-28 21:23:17 瀏覽:227