當前位置:首頁 » 存儲配置 » 大數據通用存儲格式

大數據通用存儲格式

發布時間: 2023-08-05 12:26:36

❶ 請分析「大數據」的存儲方式及主要業務跟課中所講解的關系型資料庫有何區別

大數據的存儲方式主要使用nosql
這種資料庫有幾個特點,一個是針對大數據環境,它是分布式的,另一個他的操作非常原始,只有Keyvalue讀寫
關系資料庫呢,一般都是單機的,因為關系資料庫最強大的就是事務,事物在分布式環境很難實現,所以關系資料庫通常都是單機版,另外一個是關系資料庫,它的計算層次更高,是表格上的運算

❷ 大數據存儲與應用特點及技術路線分析

大數據存儲與應用特點及技術路線分析

大數據時代,數據呈爆炸式增長。從存儲服務的發展趨勢來看,一方面,對數據的存儲量的需求越來越大;另一方面,對數據的有效管理提出了更高的要求。大數據對存儲設備的容量、讀寫性能、可靠性、擴展性等都提出了更高的要求,需要充分考慮功能集成度、數據安全性、數據穩定性,系統可擴展性、性能及成本各方面因素。

大數據存儲與應用的特點分析

「大數據」是由數量巨大、結構復雜、類型眾多數據構成的數據集合,是基於雲計算的數據處理與應用模式,通過數據的整合共享,交叉復用形成的智力資源和知識服務能力。其常見特點可以概括為3V:Volume、Velocity、Variety(規模大、速度快、多樣性)。

大數據具有數據規模大(Volume)且增長速度快的特性,其數據規模已經從PB級別增長到EB級別,並且仍在不斷地根據實際應用的需求和企業的再發展繼續擴容,飛速向著ZB(ZETA-BYTE)的規模進軍。以國內最大的電子商務企業淘寶為例,根據淘寶網的數據顯示,至2011年底,淘寶網最高單日獨立用戶訪問量超過1.2億人,比2010年同期增長120%,注冊用戶數量超過4億,在線商品數量達到8億,頁面瀏覽量達到20億規模,淘寶網每天產生4億條產品信息,每天活躍數據量已經超過50TB.所以大數據的存儲或者處理系統不僅能夠滿足當前數據規模需求,更需要有很強的可擴展性以滿足快速增長的需求。

(1)大數據的存儲及處理不僅在於規模之大,更加要求其傳輸及處理的響應速度快(Velocity)。

相對於以往較小規模的數據處理,在數據中心處理大規模數據時,需要服務集群有很高的吞吐量才能夠讓巨量的數據在應用開發人員「可接受」的時間內完成任務。這不僅是對於各種應用層面的計算性能要求,更加是對大數據存儲管理系統的讀寫吞吐量的要求。例如個人用戶在網站選購自己感興趣的貨物,網站則根據用戶的購買或者瀏覽網頁行為實時進行相關廣告的推薦,這需要應用的實時反饋;又例如電子商務網站的數據分析師根據購物者在當季搜索較為熱門的關鍵詞,為商家提供推薦的貨物關鍵字,面對每日上億的訪問記錄要求機器學習演算法在幾天內給出較為准確的推薦,否則就丟失了其失效性;更或者是計程車行駛在城市的道路上,通過GPS反饋的信息及監控設備實時路況信息,大數據處理系統需要不斷地給出較為便捷路徑的選擇。這些都要求大數據的應用層可以最快的速度,最高的帶寬從存儲介質中獲得相關海量的數據。另外一方面,海量數據存儲管理系統與傳統的資料庫管理系統,或者基於磁帶的備份系統之間也在發生數據交換,雖然這種交換實時性不高可以離線完成,但是由於數據規模的龐大,較低的數據傳輸帶寬也會降低數據傳輸的效率,而造成數據遷移瓶頸。因此大數據的存儲與處理的速度或是帶寬是其性能上的重要指標。

(2)大數據由於其來源的不同,具有數據多樣性的特點。

所謂多樣性,一是指數據結構化程度,二是指存儲格式,三是存儲介質多樣性。對於傳統的資料庫,其存儲的數據都是結構化數據,格式規整,相反大數據來源於日誌、歷史數據、用戶行為記錄等等,有的是結構化數據,而更多的是半結構化或者非結構化數據,這也正是傳統資料庫存儲技術無法適應大數據存儲的重要原因之一。所謂存儲格式,也正是由於其數據來源不同,應用演算法繁多,數據結構化程度不同,其格式也多種多樣。例如有的是以文本文件格式存儲,有的則是網頁文件,有的是一些被序列化後的比特流文件等等。所謂存儲介質多樣性是指硬體的兼容,大數據應用需要滿足不同的響應速度需求,因此其數據管理提倡分層管理機制,例如較為實時或者流數據的響應可以直接從內存或者Flash(SSD)中存取,而離線的批處理可以建立在帶有多塊磁碟的存儲伺服器上,有的可以存放在傳統的SAN或者NAS網路存儲設備上,而備份數據甚至可以存放在磁帶機上。因而大數據的存儲或者處理系統必須對多種數據及軟硬體平台有較好的兼容性來適應各種應用演算法或者數據提取轉換與載入(ETL)。

大數據存儲技術路線最典型的共有三種:

第一種是採用MPP架構的新型資料庫集群,重點面向行業大數據,採用Shared Nothing架構,通過列存儲、粗粒度索引等多項大數據處理技術,再結合MPP架構高效的分布式計算模式,完成對分析類應用的支撐,運行環境多為低成本 PC Server,具有高性能和高擴展性的特點,在企業分析類應用領域獲得極其廣泛的應用。

這類MPP產品可以有效支撐PB級別的結構化數據分析,這是傳統資料庫技術無法勝任的。對於企業新一代的數據倉庫和結構化數據分析,目前最佳選擇是MPP資料庫。

第二種是基於Hadoop的技術擴展和封裝,圍繞Hadoop衍生出相關的大數據技術,應對傳統關系型資料庫較難處理的數據和場景,例如針對非結構化數據的存儲和計算等,充分利用Hadoop開源的優勢,伴隨相關技術的不斷進步,其應用場景也將逐步擴大,目前最為典型的應用場景就是通過擴展和封裝 Hadoop來實現對互聯網大數據存儲、分析的支撐。這裡面有幾十種NoSQL技術,也在進一步的細分。對於非結構、半結構化數據處理、復雜的ETL流程、復雜的數據挖掘和計算模型,Hadoop平台更擅長。

第三種是大數據一體機,這是一種專為大數據的分析處理而設計的軟、硬體結合的產品,由一組集成的伺服器、存儲設備、操作系統、資料庫管理系統以及為數據查詢、處理、分析用途而特別預先安裝及優化的軟體組成,高性能大數據一體機具有良好的穩定性和縱向擴展性。

以上是小編為大家分享的關於大數據存儲與應用特點及技術路線分析的相關內容,更多信息可以關注環球青藤分享更多干貨

❸ 大數據常用文件格式介紹

圖片看不見的話可以看我CSDN上的文章:
https://blog.csdn.net/u013332124/article/details/86423952

最近在做hdfs小文件合並的項目,涉及了一些文件格式的讀寫,比如avro、orc、parquet等。期間閱讀了一些資料,因此打算寫篇文章做個記錄。

這篇文章不會介紹如何對這些格式的文件進行讀寫,只會介紹一下它們各自的特點以及底層存儲的編碼格式

[圖片上傳失敗...(image-a5104a-1547368703623)]

使用sequencefile還可以將多個小文件合並到一個大文件中,通過key-value的形式組織起來,此時該sequencefile可以看做是一個小文件容器。

[圖片上傳失敗...(image-4d03a2-1547368703623)]

Parquet是一個基於列式存儲的文件格式,它將數據按列劃分進行存儲。Parquet官網上的文件格式介紹圖:

[圖片上傳失敗...(image-92770e-1547368703623)]

我們可以看出,parquet由幾個部分構成:

[圖片上傳失敗...(image-391e57-1547368703623)]

Orc也是一個列式存儲格式,產生自Apache Hive,用於降低Hadoop數據存儲空間和加速Hive查詢速度。

[圖片上傳失敗...(image-ba6160-1547368703623)]

目前列式存儲是大數據領域基本的優化項,無論是存儲還是查詢,列式存儲能做的優化都很多,看完上面對orc和parquet的文件結構介紹後,我們列式存儲的優化點做一個總結:

壓縮方面

在查詢方面

就網上找到的一些數據來看,Orc的壓縮比會比Parquet的高一些,至於查詢性能,兩個應該不會差距太大。本人之前做過一個測試,在多數場景,hive on mr下,orc的查詢性能會更好一些。換成hive on spark後,parquet的性能更好一些

本文介紹的4種大數據存儲格式,2個是行式存儲,2個是列式存儲,但我們可以看到一個共同點:它們都是支持分割的。這是大數據文件結構體系中一個非常重要的特點, 因為可分割使一個文件可以被多個節點並發處理,提高數據的處理速度

另外,當前大數據的主要趨勢應該是使用列式存儲,目前我們公司已經逐步推進列式存儲的使用,本人也在hive上做過一些測試,在多個查詢場景下,無論是orc還是parquet的查詢速度都完爆text格式的, 差不多有4-8倍的性能提升 。另外,orc和parquet的壓縮比都能達到10比1的程度。因此,無論從節約資源和查詢性能考慮,在大多數情況下,選擇orc或者parquet作為文件存儲格式是更好的選擇。另外,spark sql的默認讀寫格式也是parquet。

當然,並不是說列式存儲已經一統天下了,大多時候我們還是要根據自己的使用場景來決定使用哪種存儲格式。

Sequencefile

https://blog.csdn.net/en_joker/article/details/79648861

https://stackoverflow.com/questions/11778681/advantages-of-sequence-file-over-hdfs-textfile

Avro和Sequencefile區別

https://stackoverflow.com/questions/24236803/difference-between-avrodata-file-and-sequence-file-with-respect-to-apache-sqoop

parquet

https://www.cnblogs.com/ITtangtang/p/7681019.html

Orc

https://www.cnblogs.com/ITtangtang/p/7677912.html

https://www.cnblogs.com/cxzdy/p/5910760.html

Orc和parquet的一些對比

https://blog.csdn.net/colorant/article/details/53699822

https://blog.csdn.net/yu616568/article/details/51188479

❹ 大數據解決方案主要用於存儲哪種類型的數據

大數據解決方案主要用於存儲二進制類型的數據。

數據還包括了結構化數據和非結構化數據,郵件,Word,圖片,音頻信息,視頻信息等各種類型數據,已經不是以往的關系型資料庫可以解決的了。非結構化數據的超大規模和增長,占總數據量的80~90%,比結構化數據增長快10倍到50倍,是傳統數據倉庫的10倍到50倍。

大數據特點:

海量數據有不同格式,第一種是結構化,我們常見的數據,還有半結據化網頁數據,還有非結構化視頻音頻數據。而且這些數據化他們處理方式是比較大的。數據類型繁多,如網路日誌、視頻、圖片、地理位置信息,等等。

❺ 數據存儲形式有哪幾種

【塊存儲】

典型設備:磁碟陣列,硬碟

塊存儲主要是將裸磁碟空間整個映射給主機使用的,就是說例如磁碟陣列裡面有5塊硬碟(為方便說明,假設每個硬碟1G),然後可以通過劃邏輯盤、做Raid、或者LVM(邏輯卷)等種種方式邏輯劃分出N個邏輯的硬碟。(假設劃分完的邏輯盤也是5個,每個也是1G,但是這5個1G的邏輯盤已經於原來的5個物理硬碟意義完全不同了。例如第一個邏輯硬碟A裡面,可能第一個200M是來自物理硬碟1,第二個200M是來自物理硬碟2,所以邏輯硬碟A是由多個物理硬碟邏輯虛構出來的硬碟。)

接著塊存儲會採用映射的方式將這幾個邏輯盤映射給主機,主機上面的操作系統會識別到有5塊硬碟,但是操作系統是區分不出到底是邏輯還是物理的,它一概就認為只是5塊裸的物理硬碟而已,跟直接拿一塊物理硬碟掛載到操作系統沒有區別的,至少操作系統感知上沒有區別。

此種方式下,操作系統還需要對掛載的裸硬碟進行分區、格式化後,才能使用,與平常主機內置硬碟的方式完全無異。

優點:

1、 這種方式的好處當然是因為通過了Raid與LVM等手段,對數據提供了保護。

2、 另外也可以將多塊廉價的硬碟組合起來,成為一個大容量的邏輯盤對外提供服務,提高了容量。

3、 寫入數據的時候,由於是多塊磁碟組合出來的邏輯盤,所以幾塊磁碟可以並行寫入的,提升了讀寫效率。

4、 很多時候塊存儲採用SAN架構組網,傳輸速率以及封裝協議的原因,使得傳輸速度與讀寫速率得到提升。

缺點:

1、採用SAN架構組網時,需要額外為主機購買光纖通道卡,還要買光纖交換機,造價成本高。

2、主機之間的數據無法共享,在伺服器不做集群的情況下,塊存儲裸盤映射給主機,再格式化使用後,對於主機來說相當於本地盤,那麼主機A的本地盤根本不能給主機B去使用,無法共享數據。

3、不利於不同操作系統主機間的數據共享:另外一個原因是因為操作系統使用不同的文件系統,格式化完之後,不同文件系統間的數據是共享不了的。例如一台裝了WIN7/XP,文件系統是FAT32/NTFS,而Linux是EXT4,EXT4是無法識別NTFS的文件系統的。就像一隻NTFS格式的U盤,插進Linux的筆記本,根本無法識別出來。所以不利於文件共享。


【文件存儲】

典型設備:FTP、NFS伺服器

為了克服上述文件無法共享的問題,所以有了文件存儲。

文件存儲也有軟硬一體化的設備,但是其實普通拿一台伺服器/筆記本,只要裝上合適的操作系統與軟體,就可以架設FTP與NFS服務了,架上該類服務之後的伺服器,就是文件存儲的一種了。

主機A可以直接對文件存儲進行文件的上傳下載,與塊存儲不同,主機A是不需要再對文件存儲進行格式化的,因為文件管理功能已經由文件存儲自己搞定了。

優點:

1、造價交低:隨便一台機器就可以了,另外普通乙太網就可以,根本不需要專用的SAN網路,所以造價低。

2、方便文件共享:例如主機A(WIN7,NTFS文件系統),主機B(Linux,EXT4文件系統),想互拷一部電影,本來不行。加了個主機C(NFS伺服器),然後可以先A拷到C,再C拷到B就OK了。(例子比較膚淺,請見諒……)

缺點:

讀寫速率低,傳輸速率慢:乙太網,上傳下載速度較慢,另外所有讀寫都要1台伺服器裡面的硬碟來承擔,相比起磁碟陣列動不動就幾十上百塊硬碟同時讀寫,速率慢了許多。


【對象存儲】

典型設備:內置大容量硬碟的分布式伺服器

對象存儲最常用的方案,就是多台伺服器內置大容量硬碟,再裝上對象存儲軟體,然後再額外搞幾台服務作為管理節點,安裝上對象存儲管理軟體。管理節點可以管理其他伺服器對外提供讀寫訪問功能。

之所以出現了對象存儲這種東西,是為了克服塊存儲與文件存儲各自的缺點,發揚它倆各自的優點。簡單來說塊存儲讀寫快,不利於共享,文件存儲讀寫慢,利於共享。能否弄一個讀寫快,利 於共享的出來呢。於是就有了對象存儲。

首先,一個文件包含了了屬性(術語叫metadata,元數據,例如該文件的大小、修改時間、存儲路徑等)以及內容(以下簡稱數據)。

以往像FAT32這種文件系統,是直接將一份文件的數據與metadata一起存儲的,存儲過程先將文件按照文件系統的最小塊大小來打散(如4M的文件,假設文件系統要求一個塊4K,那麼就將文件打散成為1000個小塊),再寫進硬碟裡面,過程中沒有區分數據/metadata的。而每個塊最後會告知你下一個要讀取的塊的地址,然後一直這樣順序地按圖索驥,最後完成整份文件的所有塊的讀取。

這種情況下讀寫速率很慢,因為就算你有100個機械手臂在讀寫,但是由於你只有讀取到第一個塊,才能知道下一個塊在哪裡,其實相當於只能有1個機械手臂在實際工作。

而對象存儲則將元數據獨立了出來,控制節點叫元數據伺服器(伺服器+對象存儲管理軟體),裡面主要負責存儲對象的屬性(主要是對象的數據被打散存放到了那幾台分布式伺服器中的信息),而其他負責存儲數據的分布式伺服器叫做OSD,主要負責存儲文件的數據部分。當用戶訪問對象,會先訪問元數據伺服器,元數據伺服器只負責反饋對象存儲在哪些OSD,假設反饋文件A存儲在B、C、D三台OSD,那麼用戶就會再次直接訪問3台OSD伺服器去讀取數據。

這時候由於是3台OSD同時對外傳輸數據,所以傳輸的速度就加快了。當OSD伺服器數量越多,這種讀寫速度的提升就越大,通過此種方式,實現了讀寫快的目的。

另一方面,對象存儲軟體是有專門的文件系統的,所以OSD對外又相當於文件伺服器,那麼就不存在文件共享方面的困難了,也解決了文件共享方面的問題。

所以對象存儲的出現,很好地結合了塊存儲與文件存儲的優點。

最後為什麼對象存儲兼具塊存儲與文件存儲的好處,還要使用塊存儲或文件存儲呢?

1、有一類應用是需要存儲直接裸盤映射的,例如資料庫。因為資料庫需要存儲裸盤映射給自己後,再根據自己的資料庫文件系統來對裸盤進行格式化的,所以是不能夠採用其他已經被格式化為某種文件系統的存儲的。此類應用更適合使用塊存儲。

2、對象存儲的成本比起普通的文件存儲還是較高,需要購買專門的對象存儲軟體以及大容量硬碟。如果對數據量要求不是海量,只是為了做文件共享的時候,直接用文件存儲的形式好了,性價比高。

熱點內容
滑板鞋腳本視頻 發布:2025-02-02 09:48:54 瀏覽:427
群暉怎麼玩安卓模擬器 發布:2025-02-02 09:45:23 瀏覽:552
三星安卓12彩蛋怎麼玩 發布:2025-02-02 09:44:39 瀏覽:738
電腦顯示連接伺服器錯誤 發布:2025-02-02 09:24:10 瀏覽:531
瑞芯微開發板編譯 發布:2025-02-02 09:22:54 瀏覽:141
linux虛擬機用gcc編譯時顯示錯誤 發布:2025-02-02 09:14:01 瀏覽:227
java駝峰 發布:2025-02-02 09:13:26 瀏覽:646
魔獸腳本怎麼用 發布:2025-02-02 09:10:28 瀏覽:527
linuxadobe 發布:2025-02-02 09:09:43 瀏覽:207
sql2000資料庫連接 發布:2025-02-02 09:09:43 瀏覽:721