當前位置:首頁 » 存儲配置 » MRAM存儲器的研究進展道客

MRAM存儲器的研究進展道客

發布時間: 2023-07-14 11:01:23

❶ 利用磁存儲原理來存儲數據的存儲器是什麼啊

MRAM,磁存儲器,利用巨磁阻效應,即橫向磁場改變電阻。

❷ 幾種新型非易失性存儲器

關鍵詞: 非易失性存儲器;FeRAM;MRAM;OUM引言更高密度、更大帶寬、更低功耗、更短延遲時問、更低成本和更高可靠性是存儲器設計和製造者追求的永恆目標。根據這一目標,人們研究各種存儲技術,以滿足應用的需求。本文對目前幾種比較有競爭力和發展潛力的新型非易失性存儲器做了一個簡單的介紹。
圖1 MTJ元件結構示意圖鐵電存儲器(FeRAM)
鐵電存儲器是一種在斷電時不會丟失內容的非易失存儲器,具有高速、高密度、低功耗和抗輻射等優點。
當前應用於存儲器的鐵電材料主要有鈣鈦礦結構系列,包括PbZr1-xTixO3,SrBi2Ti2O9和Bi4-xLaxTi3O12等。鐵電存儲器的存儲原理是基於鐵電材料的高介電常數和鐵電極化特性,按工作模式可以分為破壞性讀出(DRO)和非破壞性讀出(NDRO)。DRO模式是利用鐵電薄膜的電容效應,以鐵電薄膜電容取代常規的存儲電荷的電容,利用鐵電薄膜的極化反轉來實現數據的寫入與讀取。鐵電隨機存取存儲器(FeRAM)就是基於DRO工作模式。這種破壞性的讀出後需重新寫入數據,所以FeRAM在信息讀取過程中伴隨著大量的擦除/重寫的操作。隨著不斷地極化反轉,此類FeRAM會發生疲勞失效等可靠性問題。目前,市場上的鐵電存儲器全部都是採用這種工作模式。

❸ 存儲器的發展史

存儲器設備發展

1.存儲器設備發展之汞延遲線

汞延遲線是基於汞在室溫時是液體,同時又是導體,每比特數據用機械波的波峰(1)和波谷(0)表示。機械波從汞柱的一端開始,一定厚度的熔融態金屬汞通過一振動膜片沿著縱向從一端傳到另一端,這樣就得名「汞延遲線」。在管的另一端,一感測器得到每一比特的信息,並反饋到起點。設想是汞獲取並延遲這些數據,這樣它們便能存儲了。這個過程是機械和電子的奇妙結合。缺點是由於環境條件的限制,這種存儲器方式會受各種環境因素影響而不精確。

1950年,世界上第一台具有存儲程序功能的計算機EDVAC由馮.諾依曼博士領導設計。它的主要特點是採用二進制,使用汞延遲線作存儲器,指令和程序可存入計算機中。

1951年3月,由ENIAC的主要設計者莫克利和埃克特設計的第一台通用自動計算機UNIVAC-I交付使用。它不僅能作科學計算,而且能作數據處理。

2.存儲器設備發展之磁帶

UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。

磁帶是所有存儲器設備發展中單位存儲信息成本最低、容量最大、標准化程度最高的常用存儲介質之一。它互換性好、易於保存,近年來,由於採用了具有高糾錯能力的編碼技術和即寫即讀的通道技術,大大提高了磁帶存儲的可靠性和讀寫速度。根據讀寫磁帶的工作原理可分為螺旋掃描技術、線性記錄(數據流)技術、DLT技術以及比較先進的LTO技術。

根據讀寫磁帶的工作原理,磁帶機可以分為六種規格。其中兩種採用螺旋掃描讀寫方式的是面向工作組級的DAT(4mm)磁帶機和面向部門級的8mm磁帶機,另外四種則是選用數據流存儲技術設計的設備,它們分別是採用單磁頭讀寫方式、磁帶寬度為1/4英寸、面向低端應用的Travan和DC系列,以及採用多磁頭讀寫方式、磁帶寬度均為1/2英寸、面向高端應用的DLT和IBM的3480/3490/3590系列等。

磁帶庫是基於磁帶的備份系統,它能夠提供同樣的基本自動備份和數據恢復功能,但同時具有更先進的技術特點。它的存儲容量可達到數百PB,可以實現連續備份、自動搜索磁帶,也可以在驅動管理軟體控制下實現智能恢復、實時監控和統計,整個數據存儲備份過程完全擺脫了人工干涉。

磁帶庫不僅數據存儲量大得多,而且在備份效率和人工佔用方面擁有無可比擬的優勢。在網路系統中,磁帶庫通過SAN(Storage Area Network,存儲區域網路)系統可形成網路存儲系統,為企業存儲提供有力保障,很容易完成遠程數據訪問、數據存儲備份或通過磁帶鏡像技術實現多磁帶庫備份,無疑是數據倉庫、ERP等大型網路應用的良好存儲設備。

3.存儲器設備發展之磁鼓

1953年,隨著存儲器設備發展,第一台磁鼓應用於IBM 701,它是作為內存儲器使用的。磁鼓是利用鋁鼓筒表面塗覆的磁性材料來存儲數據的。鼓筒旋轉速度很高,因此存取速度快。它採用飽和磁記錄,從固定式磁頭發展到浮動式磁頭,從採用磁膠發展到採用電鍍的連續磁介質。這些都為後來的磁碟存儲器打下了基礎。

磁鼓最大的缺點是利用率不高, 一個大圓柱體只有表面一層用於存儲,而磁碟的兩面都利用來存儲,顯然利用率要高得多。 因此,當磁碟出現後,磁鼓就被淘汰了。

4.存儲器設備發展之磁芯

美國物理學家王安1950年提出了利用磁性材料製造存儲器的思想。福雷斯特則將這一思想變成了現實。

為了實現磁芯存儲,福雷斯特需要一種物質,這種物質應該有一個非常明確的磁化閾值。他找到在新澤西生產電視機用鐵氧體變換器的一家公司的德國老陶瓷專家,利用熔化鐵礦和氧化物獲取了特定的磁性質。

對磁化有明確閾值是設計的關鍵。這種電線的網格和芯子織在電線網上,被人稱為芯子存儲,它的有關專利對發展計算機非常關鍵。這個方案可靠並且穩定。磁化相對來說是永久的,所以在系統的電源關閉後,存儲的數據仍然保留著。既然磁場能以電子的速度來閱讀,這使互動式計算有了可能。更進一步,因為是電線網格,存儲陣列的任何部分都能訪問,也就是說,不同的數據可以存儲在電線網的不同位置,並且閱讀所在位置的一束比特就能立即存取。這稱為隨機存取存儲器(RAM),在存儲器設備發展歷程中它是互動式計算的革新概念。福雷斯特把這些專利轉讓給麻省理工學院,學院每年靠這些專利收到1500萬~2000萬美元。

最先獲得這些專利許可證的是IBM,IBM最終獲得了在北美防衛軍事基地安裝「旋風」的商業合同。更重要的是,自20世紀50年代以來,所有大型和中型計算機也採用了這一系統。磁芯存儲從20世紀50年代、60年代,直至70年代初,一直是計算機主存的標准方式。

5.存儲器設備發展之磁碟

世界第一台硬碟存儲器是由IBM公司在1956年發明的,其型號為IBM 350 RAMAC(Random Access Method of Accounting and Control)。這套系統的總容量只有5MB,共使用了50個直徑為24英寸的磁碟。1968年,IBM公司提出「溫徹斯特/Winchester」技術,其要點是將高速旋轉的磁碟、磁頭及其尋道機構等全部密封在一個無塵的封閉體中,形成一個頭盤組合件(HDA),與外界環境隔絕,避免了灰塵的污染,並採用小型化輕浮力的磁頭浮動塊,碟片表面塗潤滑劑,實行接觸起停,這是現代絕大多數硬碟的原型。1979年,IBM發明了薄膜磁頭,進一步減輕了磁頭重量,使更快的存取速度、更高的存儲密度成為可能。20世紀80年代末期,IBM公司又對存儲器設備發展作出一項重大貢獻,發明了MR(Magneto Resistive)磁阻磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度比以往提高了數十倍。1991年,IBM生產的3.5英寸硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此,硬碟容量開始進入了GB數量級。IBM還發明了PRML(Partial Response Maximum Likelihood)的信號讀取技術,使信號檢測的靈敏度大幅度提高,從而可以大幅度提高記錄密度。

目前,硬碟的面密度已經達到每平方英寸100Gb以上,是容量、性價比最大的一種存儲設備。因而,在計算機的外存儲設備中,還沒有一種其他的存儲設備能夠在最近幾年中對其統治地位產生挑戰。硬碟不僅用於各種計算機和伺服器中,在磁碟陣列和各種網路存儲系統中,它也是基本的存儲單元。值得注意的是,近年來微硬碟的出現和快速發展為移動存儲提供了一種較為理想的存儲介質。在快閃記憶體晶元難以承擔的大容量移動存儲領域,微硬碟可大顯身手。目前尺寸為1英寸的硬碟,存儲容量已達4GB,10GB容量的1英寸硬碟不久也會面世。微硬碟廣泛應用於數碼相機、MP3設備和各種手持電子類設備。

另一種磁碟存儲設備是軟盤,從早期的8英寸軟盤、5.25英寸軟盤到3.5英寸軟盤,主要為數據交換和小容量備份之用。其中,3.5英寸1.44MB軟盤占據計算機的標准配置地位近20年之久,之後出現過24MB、100MB、200MB的高密度過渡性軟盤和軟碟機產品。然而,由於USB介面的快閃記憶體出現,軟盤作為數據交換和小容量備份的統治地位已經動搖,不久會退出存儲器設備發展歷史舞台。

6. 存儲器設備發展之光碟

光碟主要分為只讀型光碟和讀寫型光碟。只讀型指光碟上的內容是固定的,不能寫入、修改,只能讀取其中的內容。讀寫型則允許人們對光碟內容進行修改,可以抹去原來的內容,寫入新的內容。用於微型計算機的光碟主要有CD-ROM、CD-R/W和DVD-ROM等幾種。

上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。

從LD的誕生至計算機用的CD-ROM,經歷了三個階段,即LD-激光視盤、CD-DA激光唱盤、CD-ROM。下面簡單介紹這三個存儲器設備發展階段性的產品特點。

LD-激光視盤,就是通常所說的LCD,直徑較大,為12英寸,兩面都可以記錄信息,但是它記錄的信號是模擬信號。模擬信號的處理機制是指,模擬的電視圖像信號和模擬的聲音信號都要經過FM(Frequency Molation)頻率調制、線性疊加,然後進行限幅放大。限幅後的信號以0.5微米寬的凹坑長短來表示。

CD-DA激光唱盤 LD雖然取得了成功,但由於事先沒有制定統一的標准,使它的開發和製作一開始就陷入昂貴的資金投入中。1982年,由飛利浦公司和索尼公司制定了CD-DA激光唱盤的紅皮書(Red Book)標准。由此,一種新型的激光唱盤誕生了。CD-DA激光唱盤記錄音響的方法與LD系統不同,CD-DA激光唱盤系統首先把模擬的音響信號進行PCM(脈沖編碼調制)數字化處理,再經過EMF(8~14位調制)編碼之後記錄到盤上。數字記錄代替模擬記錄的好處是,對干擾和雜訊不敏感,由於盤本身的缺陷、劃傷或沾污而引起的錯誤可以校正。

CD-DA系統取得成功以後,使飛利浦公司和索尼公司很自然地想到利用CD-DA作為計算機的大容量只讀存儲器。但要把CD-DA作為計算機的存儲器,還必須解決兩個重要問題,即建立適合於計算機讀寫的盤的數據結構,以及CD-DA誤碼率必須從現有的10-9降低到10-12以下,由此就產生了CD-ROM的黃皮書(Yellow Book)標准。這個標準的核心思想是,盤上的數據以數據塊的形式來組織,每塊都要有地址,這樣一來,盤上的數據就能從幾百兆位元組的存儲空間上被迅速找到。為了降低誤碼率,採用增加一種錯誤檢測和錯誤校正的方案。錯誤檢測採用了循環冗餘檢測碼,即所謂CRC,錯誤校正採用里德-索洛蒙(Reed Solomon)碼。黃皮書確立了CD-ROM的物理結構,而為了使其能在計算機上完全兼容,後來又制定了CD-ROM的文件系統標准,即ISO 9660。

在上世紀80年代中期,光碟存儲器設備發展速度非常快,先後推出了WORM光碟、磁光碟(MO)、相變光碟(Phase Change Disk,PCD)等新品種。20世紀90年代,DVD-ROM、CD-R、CD-R/W等開始出現和普及,目前已成為計算機的標准存儲設備。

光碟技術進一步向高密度發展,藍光光碟是不久將推出的下一代高密度光碟。多層多階光碟和全息存儲光碟正在實驗室研究之中,可望在5年之內推向市場。

7.存儲器設備發展之納米存儲

納米是一種長度單位,符號為nm。1納米=1毫微米,約為10個原子的長度。假設一根頭發的直徑為0.05毫米,把它徑向平均剖成5萬根,每根的厚度即約為1納米。與納米存儲有關的主要進展有如下內容。

1998年,美國明尼蘇達大學和普林斯頓大學制備成功量子磁碟,這種磁碟是由磁性納米棒組成的納米陣列體系。一個量子磁碟相當於我們現在的10萬~100萬個磁碟,而能源消耗卻降低了1萬倍。

1988年,法國人首先發現了巨磁電阻效應,到1997年,採用巨磁電阻原理的納米結構器件已在美國問世,它在磁存儲、磁記憶和計算機讀寫磁頭等方面均有廣闊的應用前景。

2002年9月,美國威斯康星州大學的科研小組宣布,他們在室溫條件下通過操縱單個原子,研製出原子級的硅記憶材料,其存儲信息的密度是目前光碟的100萬倍。這是納米存儲材料技術研究的一大進展。該小組發表在《納米技術》雜志上的研究報告稱,新的記憶材料構建在硅材料表面上。研究人員首先使金元素在硅材料表面升華,形成精確的原子軌道;然後再使硅元素升華,使其按上述原子軌道進行排列;最後,藉助於掃瞄隧道顯微鏡的探針,從這些排列整齊的硅原子中間隔抽出硅原子,被抽空的部分代表「0」,餘下的硅原子則代表「1」,這就形成了相當於計算機晶體管功能的原子級記憶材料。整個試驗研究在室溫條件下進行。研究小組負責人赫姆薩爾教授說,在室溫條件下,一次操縱一批原子進行排列並不容易。更為重要的是,記憶材料中硅原子排列線內的間隔是一個原子大小。這保證了記憶材料的原子級水平。赫姆薩爾教授說,新的硅記憶材料與目前硅存儲材料存儲功能相同,而不同之處在於,前者為原子級體積,利用其製造的計算機存儲材料體積更小、密度更大。這可使未來計算機微型化,且存儲信息的功能更為強大。

以上就是本文向大家介紹的存儲器設備發展歷程的7個關鍵時期

❹ MRAM是否可以按位元組讀寫

MRAM可以按位元組讀寫
mram也是內存的一種!這種內存的質量很好!比一般的RAM好!下面是MRAM的一些介紹:
MRAM
MRAM(Magnetic Random Access Memory) 是一種非揮發性的磁性隨機存儲器。它擁有靜態隨機存儲器(SRAM)的高速讀取寫入能力,以及動態隨機存儲器(DRAM)的高集成度,而且基本上可以無限次地重復寫入。
MRAM用TMR磁性體單元存儲數據
趨勢要點:隨著材料學的不斷進步, 一種新的磁阻內存(MRAM)正在吸引人們的目光。盡管還只是在實驗室存在,但是這種高速內存技術已經被視為DRAM內存的接班人,將會把「等待」這個詞徹底從電腦用戶的詞典中去掉。
DRAM的局限性
你是否很久以來都認為開機之後看著Windows進度條一次次滾過,爾後登錄、打開桌面這樣的過程是理所當然?
之所以每次開機時操作系統都需要重新做一遍內存初始化的操作,是因為現在普遍使用的內存都採用的是動態隨機存取技術(DRAM)的內存,像SDRAM、DDR和DDR II都屬於這種內存。使用了DRAM技術的內存的一個重要特點就是它們屬於揮發性內存(volatile memory),也就是說一旦斷電,它裡面的數據就會消失。換句話說,DRAM內存裡面的數據之所以能夠存在,實際上是依靠不斷供電來刷新才得以保持的。
所以,操作系統在每次開機的時刻,總需要把一系列系統本身要使用的數據再次寫入內存,這就是開機等待時間里操作系統完成的工作。對於DRAM內存來說,如果要免除這個過程,供內存刷新的電力是不能斷的。所謂的休眠(sleep),實際上計算機還在繼續耗電,只不過是比正常運行時少一些罷了。

❺ 當今主流行存儲器介紹

儲器技術是一種不斷進步的技術,每一種新技術的出現都會使某種現存的技術走進歷史,這是因為開發新技術的初衷就是為了消除或減輕某種特定存儲器產品的不足之處。

舉例來說,快閃記憶體技術脫胎於EEPROM,它的第1個主要用途就是為了取代用於PC機BIOS的EEPROM晶元,以便方便地對這種計算機中最基本的代碼進行更新。

這樣,隨著各種專門應用不斷提出新的要求,新的存儲器技術也層出不窮,從PC機直到數字相機。本文即著眼於對現有的存儲器技術及其未來走向進行考察。

DRAM

嚴重依賴於PC的DRAM市場總是處於劇烈的振盪之中。對目前處於衰退過程中的供應商們來說,降低每比特DRAM生產成本唯一劃算的方法就是縮小DRAM晶元的尺寸。所以,製造商們就不斷地尋找可以縮小DRAM晶元尺寸的方法。

隨著市場的復甦和邊際效益的增長,供應商們會逐漸轉向使用300mm的大圓片。但現在,大多數DRAM生產商都承擔不起在300mm圓片上生產的費用。

就像石油公司都想多賣高品質汽油以獲取高額利潤一樣,DRAM生產商也正在把產品線從SDRAM換成DDR SDRAM,希望賣個高價。在DDR之後又出來一個DDR II,這是一種更先進的DRAM技術,已經受到英特爾的歡迎。出於同樣的原因,存儲器生產商們很快就會升級到DDR II技術。

同樣像石油公司不斷勘探新油田一樣,DRAM生產商也在不斷地開發新的市場,包括通信和消費電子市場在內。他們希望這樣能降低對PC市場的依存度,平穩渡過市場振盪期。

許多生產商都開始針對這些市場開發專門的DRAM產品。

不幸的是,隨著人們開始對各種模塊和伺服器進行升級,PC市場在未來仍將是DRAM應用最主要的推動力。盡管一些生產商認為通信將成為另一個主要的推動力,但根據iSuppli公司的預測,至少在2002年,通信市場在DRAM銷售中所佔的份額將仍低於2%。

生產商對消費電子市場的期望值更高。網路設備和數字電視是DRAM應用增長最迅速的領域,但與PC市場相比,其份額仍然太小了。

但是,不論是消費電子市場還是PC市場,DRAM面臨的最大挑戰都是以下需求:更高的密度、更大的帶寬、更低的功耗、更少的延遲時間以及更低的價格。因此,對DRAM生產商和用戶來說,在消費電子領域中性價比還是最主要的考慮因素。

現在已經有許多公司在開始或已經開始提供專門為各種非PC應用設計的DRAM,包括短延遲DRAM(RL-DRAM)以及各種Rambus DRAM(RDRAM)。這些專用DRAM的產量都很小,單位售價很高。因此,iSuppli相信在非PC領域內,這些專用存儲器永遠不會取代普通的SDRAM和DDR存儲器。所以,對DRAM來說,其未來屬於低價、標准、大量生產的、面向其占最大份額的PC市場的技術。

快閃記憶體和其他非易失性存儲器

目前,非易失性存儲器技術的最高水平是快閃記憶體。如同DRAM依賴於PC市場一樣,快閃記憶體也依賴於手機和機頂盒市場。由於這些設備的需求一直不夠強勁,所以快閃記憶體目前良好的銷售情況只是季節性的,今年下半年就會降下來。

但到明年上半年,手機、數字消費產品以及數字介質的需求會比較強勁,所以快閃記憶體的前景也會變得光明一些。

盡管目前非易失性存儲器中最先進的就是快閃記憶體,但技術卻並未就此停步。生產商們正在開發多種新技術,以便使快閃記憶體也擁有像DRAM和SDRAM那樣的高速、低價、壽命長等特點。

非易失性存儲器包括鐵電介質存儲器(FRAM或FeRAM)、磁介質存儲器(MRAM)、奧弗辛斯基效應一致性存儲器(OUM)以及聚合物存儲器(PFRAM),對數據處理來說,它們都很有前途,因為它們突破了SRAM、DRAM以及快閃記憶體的局限性。

每種技術都有自己的目標市場,iSuppli公司將在下面逐一進行分析。

FRAM

FRAM是下一代的非易失性存儲器技術,運行能耗低,在斷電後能長期保存數據。它綜合了RAM高速讀寫和ROM長期保存數據的特點。

這項技術利用了鐵電材料可保存信息的特點,使用工業標準的CMOS半導體存儲器製造工藝來生產,直到近日才研發成功。但是,FRAM的壽命是有限的,而其讀取是破壞性的,就是說一旦進行讀取,FRAM中存儲的數據就消失了。

MRAM

MRAM是非易失性的存儲器,速度比DRAM還快。在實驗室中,MRAM的寫入時間可低至2.3ns。

MRAM擁有無限次的讀寫能力,並且功耗極低,可實現瞬間開關機並能延長便攜機的電池使用時間。而且,MRAM的電路比普通存儲器還簡單,整個晶元只需一條讀出電路。

但就生產成本來看,MRAM比SRAM、DRAM及快閃記憶體都高得多。

OUM

OUM是一種非易失性存儲器,可以替代低功耗的快閃記憶體。它擁有很長的讀寫操作壽命,並且比快閃記憶體更易集成。OUM存儲單元的密度極高,讀取操作完全安全,只需極低的電壓和功率即可工作,同現有邏輯電路的集成也相當簡單。用OUM單元製作的存儲器大約可寫入10億次,這使它成為便攜設備中大容量存儲器的理想替代品。

但是,OUM有一定的使用壽命,長期使用會出一些可靠性問題。

PFRAM

PFRAM是一種塑料的、基於聚合物的非易失性存儲器,通過三維堆疊技術可以得到很高的密度,但它的讀寫操作壽命有限。

PFRAM可能會替代快閃記憶體,並且其成本只有NOR型快閃記憶體的10%左右。塑料存儲器的存儲潛力也相當巨大。

今後,生產聚合物存儲器可能會變得像印照片一樣簡單,但今年才剛剛開始對這種存儲器的生產工藝進行研發。PFRAM的讀寫次數也有限,並且其讀取也是破壞性的,就像FRAM一樣。

總之,存儲器技術將會繼續發展,以滿足不同的應用需求。就PC市場來說,更高密度、更大帶寬、更低功耗、更短延遲時間、更低成本的主流DRAM技術將是不二之選。

而在非易失性存儲器領域,供應商們正在研究快閃記憶體之外的各種技術,以便滿足不同應用的需求,而這些技術各有優劣。

❻ 存算一體原理

存算一體晶元主流研究方向:
根據存儲器介質的不同,目前存算一體晶元的主流研發集中在傳統易失性存儲器,如SRAM、DRAM,以及非易失性存儲器,如RRAM,PCM,MRAM與快閃記憶體等,其中比較成熟的是以SRAM和MRAM為代表的通用近存計算架構。

通用近存計算架構:
採用同構眾核的架構,每個存儲計算核(MPU)包含計算引擎(Processing Engine, PE)、緩存(Cache)、控制(CTRL)與輸入輸出(Inout/Output, I/O)等,這里緩存可以是SRAM、MRAM或類似的高速隨機存儲器。

(1) SRAM存算一體

由於SRAM是二值存儲器,二值MAC運算等效於XNOR累加運算,可以用於二值神經網路運算。

(2) DRAM存算一體

基於DRAM的存算一體設計主要利用DRAM單元之間的電荷共享機制[33,34]。

(3) RRAM/PCM/Flash多值存算一體

基於RRAM/PCM/Flah的多值存算一體方案的基本原理是利用存儲單元的多值特性,通過器件本徵的物理電氣行為(例如基爾霍夫定律與歐姆定律)來實現多值MAC運算。每個存儲單元可以看作一個可變電導/電阻,用來存儲網路權重,當在每一行施加電流/電壓(激勵)時,每一列即可得到MAC運算的電壓/電流值。

(4) RRAM/PCM/MRAM二值存算一體

基於RRAM/PCM/MRAM的二值存算一體主要有兩種方案。第一種方案是利用輔助外圍電路,跟上述SRAM存算一體類似,第二種方案是直接利用存儲單元實現布爾邏輯計算。

熱點內容
ftp的服務系統主要包括什麼 發布:2025-02-03 21:41:33 瀏覽:304
換汽車壓縮機 發布:2025-02-03 21:38:10 瀏覽:66
安卓版的迷你世界怎麼登錄 發布:2025-02-03 21:28:05 瀏覽:586
dt如何編譯 發布:2025-02-03 21:16:59 瀏覽:564
unity調用腳本 發布:2025-02-03 21:13:21 瀏覽:268
php方法類 發布:2025-02-03 21:01:56 瀏覽:444
電腦基岩版材質包怎麼安裝到伺服器里 發布:2025-02-03 20:57:33 瀏覽:391
linux文件組 發布:2025-02-03 20:53:51 瀏覽:330
db2存儲執行變慢 發布:2025-02-03 20:42:21 瀏覽:766
滑板鞋腳本視頻 發布:2025-02-02 09:48:54 瀏覽:433