存儲優化sql
SQL 查詢優化減少了查詢所需的資源並提高了整體系統性能,在本文中,我們將討論 SQL 查詢優化、它是如何完成的、最佳實踐及其重要性。
SQL 查詢優化是編寫高效的 SQL 查詢,並在執行時間和資料庫表示方面 提高查詢性能 的迭代過程,查詢優化是幾個關系資料庫管理系統 (RDBMS) 的一項重要功能。
查詢是對來自資料庫的數據或信息的問題或請求,需要編寫一組資料庫可以理解的預定義代碼,結構化查詢語言 (SQL) 和其他查詢語言旨在檢索或管理關系資料庫中的數據。
資料庫中的查詢可以用許多不同的結構編寫,並且可以通過不同的演算法執行,寫得不好的查詢會消耗更多的系統資源,執行時間長,並可能導致服務損失,一個完美的查詢可以減少執行時間並帶來最佳的 SQL 性能。
SQL查詢優化的主要目的是:
確保查詢處於最佳路徑和形式非常重要,SQL 查詢過程需要最好的執行計劃和計算資源,因為它們是 CPU 密集型操作,SQL 查詢優化通過三個基本步驟完成:
解析確保查詢在語法和語義上都是正確的,如果查詢語法正確,則將其轉換為表達式並傳遞到下一步。
優化在查詢性能中扮演著重要的角色,並且可能很困難,任何考慮優化的查詢執行計劃都必須返回與之前相同的結果,但優化後的性能應該會有所提高。
SQL 查詢優化包括以下基本任務:
最後,查詢執行涉及將查詢優化步驟生成的計劃轉化為操作,如果沒有發生錯誤,此步驟將返回結果給用戶。
一旦用戶確定某個查詢需要改進以優化 SQL 性能,他們就可以選擇任何優化方法——優化 SQL 查詢性能的方法有很多種,下面介紹了一些最佳實踐。
提高查詢性能的一種簡單方法是將 SELECT * 替換為實際的列名,當開發人員在表中使用 SELECT * 語句時,它會讀取每一列的可用數據。
使用 SELECT 欄位名 FROM 而不是 SELECT * FROM 時,可以縮小查詢期間從表中提取的數據的范圍,這有助於提高查詢速度。
循環中的 SQL 查詢運行不止一次,這會顯著降低運行速度,這些查詢會不必要地消耗內存、CPU 能力和帶寬,這會影響性能,尤其是當 SQL 伺服器不在本地計算機上時,刪除循環內的查詢可提高整體查詢性能。
使用SQL 伺服器索引可以減少運行時間並更快地檢索數據,可以使用聚集和非聚集 SQL 索引來優化 SQL 查詢,非聚集索引單獨存儲,需要更多的磁碟空間,因此,了解何時使用索引很重要。
該OLAP功能「擴展了SQL解析函數的語法。」 SQL 中的 OLAP 功能更快且易於使用,熟悉這些語法的 SQL 開發人員和 DBA 可以很容易地適應和使用它們。
OLAP 函數可以創建所有標准計算度量,例如排名、移動聚合、份額、期初至今、前期和未來期、平行期等。
查詢優化器使用統計信息來確定如何最好地連接表、何時應該使用索引以及如何訪問這些索引等,無論是手動還是自動,SQL 伺服器統計信息都應該保持最新。
過時的 SQL Server 統計信息會影響表、索引或列統計信息,並導致查詢計劃性能不佳。
SQL 查詢優化可以輕松提高系統性能,從而節省成本,優化 SQL 查詢可以提高運營效率並加快性能,從而提高系統上線進度。
SQL 查詢優化很重要,原因有很多,包括:
組織可以通過更快的響應時間獲得可靠的數據訪問和高水平的性能,優化 SQL 查詢不僅可以提高整體系統性能,還可以提高組織的聲譽,最終,SQL 查詢優化的最佳實踐幫助用戶獲得准確、快速的資料庫結果。
B. 資料庫基礎詳解:存儲過程、視圖、游標、SQL語句優化以及索引
寫在文章前:本系列文章用於博主自己歸納復習一些基礎知識,同時也分享給可能需要的人,因為水平有限,肯定存在諸多不足以及技術性錯誤,請大佬們及時指正。
存儲過程 是事先經過編譯並存儲在資料庫中的一段SQL語句的集合。想要實現相應的功能時,只需要調用這個存儲過程就行了(類似於函數,輸入具有輸出參數)。
優點 :
缺點 :
Delete用來刪除表的全部或者部分數據,執行delete之後,用戶需要提交之後才會執行,會觸發表上的DELETE觸發器(包含一個OLD的虛擬表,可以只讀訪問被刪除的數據),DELETE之後表結構還在,刪除很慢,一行一行地刪,因為會記錄日誌,可以利用日誌還原數據;
Truncate刪除表中的所有數據,這個操作不能回滾,也不會觸發這個表上的觸發器。操作比DELETE快很多(直接把表drop掉,再創建一個新表,刪除的數據不能找回)。如果表中有自增(AUTO_INCREMENT)列,則重置為1。
Drop命令從資料庫中刪除表,所有的數據行,索引和約束都會被刪除。不能回滾,不會觸發觸發器。
觸發器(TRIGGER)是由事件(比如INSERT/UPDATE/DELETE)來觸發運行的操作(不能被直接調用,不能接收參數)。在資料庫里以獨立的對象存儲,用於保證數據完整性(比如可以檢驗或轉換數據)。
約束(Constraint)類型:
從資料庫的基本表中通過查詢選取出來的數據組成的虛擬表(資料庫中只存放視圖的定義,而不存放視圖的數據)。可以對其進行增/刪/改/查等操作。視圖是對若干張基本表的引用,一張虛表,查詢語句執行的結果,不存儲具體的數據(基本表數據發生了改變,視圖也會跟著改變)。
可以跟基本表一樣,進行增刪改查操作( 增刪改操作有條件限制,一般視圖只允許查詢操作 ),對視圖的增刪改也會影響原表的數據。 它就像一個窗口,透過它可以看到資料庫中自己感興趣的數據並且操作它們。 好處:
用於定位在查詢返回的結果集的特定行,以對特定行進行操作。使用游標可以方便地對結果集進行移動遍歷,根據需要滾動或對瀏覽/修改任意行中的數據。主要用於互動式應用。它是一段私有的SQL工作區,也就是一段內存區域,用於暫時存放受SQL語句影響的數據,簡單來說,就是將受影響的數據暫時放到了一個內存區域的虛表當中,這個虛表就是游標。
游標是一種能從包括多條數據記錄的結果集中每次提取一條記錄的機制。即游標用來逐行讀取結果集。游標充當指針的作用。盡管游標能遍歷結果中的所有行,但他一次只指向一行。
游標的一個常見用途就是保存查詢結果,以便以後使用。游標的結果集是由SELECT語句產生,如果處理過程需要重復使用一個記錄集,那麼創建一次游標而重復使用若干次,比重復查詢資料庫要快的多。通俗來說,游標就是能在sql的查詢結果中,顯示某一行(或某多行)數據,其查詢的結果不是數據表,而是已經查詢出來的結果集。
簡單來說:游標就是在查詢出的結果集中進行選擇性操作的工具。
讓緩存更高效。對於連接查詢,如果其中一個表發生變化,那麼整個查詢緩存就無法使用。而分解後的多個查詢,即使其中一個表發生變化,對其它表的查詢緩存依然可以使用。分解成多個單表查詢,這些單表查詢的緩存結果更可能被其它查詢使用到,從而減少冗餘的查詢。減少鎖競爭。
索引是對資料庫表中一列或多列的值進行排序的一種結構(說明是在列上建立的),使用索引可快速訪問資料庫表中的特定信息。如果想按特定職員的姓來查找他或她,則與在表中搜索所有的行相比,索引有助於更快地獲取信息。索引的一個主要目的就是加快檢索表中數據,亦即能協助信息搜索者盡快的找到符合限制條件的記錄ID的輔助數據結構。
當表中有大量記錄時,若要對表進行查詢,第一種搜索信息方式是全表搜索,是將所有記錄一一取出,和查詢條件進行一一對比,然後返回滿足條件的記錄,這樣做會消耗大量資料庫系統時間,並造成大量磁碟I/O操作。第二種就是在表中建立索引,然後在索引中找到符合查詢條件的索引值,最後通過保存在索引中的ROWID(相當於頁碼)快速找到表中對應的記錄。
例如這樣一個查詢:select * from table1 where id=10000。如果沒有索引,必須遍歷整個表,直到ID等於10000的這一行被找到為止。有了索引之後(必須是在ID這一列上建立的索引),即可在索引中查找。由於索引是經過某種演算法優化過的,因而查找次數要少的多。可見,索引是用來定位的。
從應用上分, 主鍵索引(聚集) , 唯一索引(聚集/非聚集) , 普通索引 , 組合索引 , 單列索引和全文索引
C. oracle存儲過程sql執行超時
oracle存儲過程sql執行超時要優化系統。優化系統步驟:
1、參數默認是30秒,執行的sql超過30秒就會報超時錯誤。
2、優化sql讓執行更快。
3、修改這個參數,在調用執行SQL語句之前。Oracle公司(甲骨文)是全球最大的信息管理軟體及服務供應商,成立於1977年,總部位於美國加州Redwoodshore,面向全球開放oracle認證,Oracle開發的關系資料庫產品因性能卓越而聞名,Oracle資料庫產品為財富排行榜上的前1000家公司所採用。
D. SQL優化(二)
SQL優化一: sql優化(一)
上片文章已經詳細介紹了explain各個欄位的含義,以及什麼情況應該建立索引,什麼情況不需要建立索引以及sql語句性能的判斷依據,接下來我介紹下如何合理的建立索引。
sql語句:select id,author_id from article where category_id = 1 and comments>1 order by views desc limit 1;
分析:首先我們根據where後面的條件建立符合索引,然後根據order by後面的欄位建立索引,因此建立索引idx_article_ccv,即以(category_id,comments,views)數據列建立復合索引,但由於comments是一個范圍,按照BTree索引的原理,先排序category_id,如果遇到相同的category_id則再排序comments,如果遇到相同的comments則再排序views,又因為comments欄位在復合索引里處於中間位置,而comments>1是一個條件(是一個范圍值),在復合索引的一個范圍值的數據列後面的索引全部失效,mysql無法利用索引再對後面的views部分進行檢索,也就是說views無法按照索引排序,所以explain下此sql語句,type為range,extra使用的是Using filesort,這是比較糟糕的。所以我們放棄comments這個范圍欄位,建立索引idx_article_cv,即以(category_id,views)數據列建立復合索引,explain 此sql,type變成了ref,extra的using filesort也變成了using index,這就變得好多了。
索引:idx_article_cv,即以(category_id,views)數據列建立復合索引
前段時間做了一個銷售精細化項目,是公司crm項目的一個大模塊,大致就是為銷售人員制定指標,實現銷售目標從區域到團到業務員到客戶,實時跟蹤業務員所負責客戶的下單量的情況。這就存在許多關聯關系,區域-團,團-業務員,業務員-客戶,這使得sql常常需要關聯多張表。
sql語句:SELECT
tu.fuserid,
tu.faccount,
tu.fphone,
tu.fcertificationtype,
tu.fcertificatename,
tu.fkeyarea,
tu.fkeyareatext,
DATE_FORMAT(tcr.fupdatetime,'%Y-%m-%d %H:%i:%s') as fupdatetime,
tag.forggroupid,
tag.forggroupname,
tug.forguserid,
tug.fusername,
tug.fuserphone,
tag.fcitycode
FROM t_finedt_user AS tu
LEFT JOIN t_finedt_customer_relation AS tcr
ON tu.fuserid = tcr.fuserid
LEFT JOIN t_finedt_usergroup AS tug
ON tcr.forguserid = tug.forguserid
and tcr.forggroupid = tug.forggroupid
LEFT JOIN t_finedt_areagroup AS tag
ON tug.forggroupid = tag.forggroupid
where tu.fkeyarea=? and tu.fuserid=? and tug.forggroupid = ?
分析:上面的sql是左連接,左邊的表一定是全表查詢,所以要建立右邊表對應關聯欄位的索引,在表t_finedt_user上建立tu_fuserid_fkeyarea索引,即以(fuserid,fkeyarea)欄位建立索引,在表t_finedt_customer_relation 上建立tcr_forguserid_forggroupid索引,即以(forguserid,forggroupid)欄位建立索引,在表t_finedt_usergroup 上建立tug_forguserid_forggroupid索引,即以(forguserid,forggroupid)欄位建立索引,在表t_finedt_areagroup上建立tag_forggroupid索引,即以(forggroupid)欄位建立索引。建立索引後,sql查詢速度明顯快了很多
索引:tcr_forguserid_forggroupid,tu_fuserid_fkeyarea,tug_forguserid_forggroupid,tag_forggroupid
1、盡可能減少join語句中的NestedLoop的循環次數,永遠用小結果集驅動大結果集
2、優先優化NestedLoop的內層循環
3、保證join語句總被驅動表上的join欄位已經被索引
4、當無法保證被驅動表join條件欄位被索引,且內存資源充足的前提下,不要太吝嗇joinBuffer的設置
1、全值匹配我最愛
2、最佳左前綴原則——如果索引了多列,要遵守最左前綴原則,指的是查詢從索引的最左前列開始並且不跳過索引中的列
3、並在索引列上做任何操作(計算、函數、自動or手動類型轉換),這些會導致索引失效而轉向全表掃描
4、存儲引擎不能使用索引中范圍條件右邊的列,范圍之後的索引全失效
5、盡量使用覆蓋索引(之訪問索引的查詢(索引列和查詢的列一致)),減少select *
6、mysql在使用不等於(!=、>、<)的時候無法使用索引會導致全表掃描。
7、is null、is not null也無法使用索引。
8、like以通配符開頭("%abc.."),mysql索引失效也會變成全表掃描的操作。
9、字元串不加單引號也會引起索引失效
10、少用or,用它來連接時會索引失效。
1、對於單值索引,盡量選擇針對當前query過濾性更好的索引
2、在選擇組合索引的時候,當前query中過濾性最好的欄位在索引欄位順序中,位置越靠前越好
3、在選擇組合索引的時候,盡量選擇盡可能包含當前query中的where字句中更多欄位的索引
4、盡可能通過分析統計信息和調整query的寫法來達到選擇合適索引的目的。
全值匹配我最愛,最左前綴要遵守
帶頭大哥不能死,中間兄弟不能斷
索引列上少計算,范圍之後全失效
like百分寫最右,覆蓋索引不寫里
不等空值還有or,索引失效要少用
var引號不可丟,sql高級也不難
E. SQL執行與優化
SQL優化
執行計劃,表關聯查詢順序,優化策略與思路
下面再向前走一些,容我根據自己的認識說一下查詢執行的流程是怎樣的:
1.連接
1.1客戶端發起一條Query請求,監聽客戶端的『連接管理模塊』接收請求
1.2將請求轉發到『連接進/線程模塊』
1.3調用『用戶模塊』來進行授權檢查
1.4通過檢查後,『連接進/線程模塊』從『線程連接池』中取出空閑的被緩存的連接線程和客戶端請求對接,如果失敗則創建一個新的連接請求
2.處理
2.1先查詢緩存,檢查Query語句是否完全匹配,接著再檢查是否具有許可權,都成功則直接取數據返回
2.2上一步有失敗則轉交給『命令解析器』,經過詞法分析,語法分析後生成解析樹
2.3接下來是預處理階段,處理解析器無法解決的語義,檢查許可權等,生成新的解析樹
2.4再轉交給對應的模塊處理
2.5如果是SELECT查詢還會經由『查詢優化器』做大量的優化,生成執行計劃
2.6模塊收到請求後,通過『訪問控制模塊』檢查所連接的用戶是否有訪問目標表和目標欄位的許可權
2.7有則調用『表管理模塊』,先是查看table cache中是否存在,有則直接對應的表和獲取鎖,否則重新打開表文件
2.8根據表的meta數據,獲取表的存儲引擎類型等信息,通過介面調用對應的存儲引擎處理
2.9上述過程中產生數據變化的時候,若打開日誌功能,則會記錄到相應二進制日誌文件中
3.結果
3.1Query請求完成後,將結果集返回給『連接進/線程模塊』
3.2返回的也可以是相應的狀態標識,如成功或失敗等
3.3『連接進/線程模塊』進行後續的清理工作,並繼續等待請求或斷開與客戶端的連接
接下來再走一步,讓我們看看一條SQL語句的前世今生。
首先看一下示例語句
示例語句
執行順序
SQL解析
1. FROM
當涉及多個表的時候,左邊表的輸出會作為右邊表的輸入,之後會生成一個虛擬表VT1。
(1-J1)笛卡爾積
計算兩個相關聯表的笛卡爾積(CROSS JOIN) ,生成虛擬表VT1-J1。
兩次全表掃描
哈希索引,查找復雜度都是 O(1) 。
2. WHERE
對VT1過程中生成的臨時表進行過濾,滿足WHERE子句的列被插入到VT2表中。
注意:
此時因為分組,不能使用聚合運算;也不能使用SELECT中創建的別名;
與ON的區別:
如果有外部列,ON針對過濾的是關聯表,主表(保留表)會返回所有的列;
如果沒有添加外部列,兩者的效果是一樣的;
應用:
對主表的過濾應該放在WHERE;
對於關聯表,先條件查詢後連接則用ON,先連接後條件查詢則用WHERE;
hash join 哈希連接 驅動表和被驅動表都只會訪問0次或1次
應用場景:一個大表一個小表/表上沒有索引/返回結果集比較大
3. GROUP BY
這個子句會把VT2中生成的表按照GROUP BY中的列進行分組。生成VT3表。
注意:
其後處理過程的語句,如SELECT,HAVING,所用到的列必須包含在GROUP BY中,對於沒有出現的,得用聚合函數;
原因:
GROUP BY改變了對表的引用,將其轉換為新的引用方式,能夠對其進行下一級邏輯操作的列會減少;
原作者的理解是:
根據分組欄位,將具有相同分組欄位的記錄歸並成一條記錄,因為每一個分組只能返回一條記錄,除非是被過濾掉了,而不在分組欄位裡面的欄位可能會有多個值,多個值是無法放進一條記錄的,所以必須通過聚合函數將這些具有多值的列轉換成單值;
GROUP BY 重新聚合查詢
4. HAVING
這個子句對VT3表中的不同的組進行過濾,只作用於分組後的數據,滿足HAVING條件的子句被加入到VT4表中。
7.LIMIT
LIMIT子句從上一步得到的VT6虛擬表中選出從指定位置開始的指定行數據。
注意:
offset和rows的正負帶來的影響;
當偏移量很大時效率是很低的,可以這么做:
採用子查詢的方式優化,在子查詢里先從索引獲取到最大id,然後倒序排,再取N行結果集
採用INNER JOIN優化,JOIN子句里也優先從索引獲取ID列表,然後直接關聯查詢獲得最終結果
當前未用到索引,
三次full scan , table1 AS a / table2 AS b / GROUP BY
盡量少做重復的工作
控制同一語句的多次執/減少多次的數據轉換/
杜絕不必要的子查詢和連接表,子查詢在執行計劃一般解釋成外連接,多餘的連接表帶來額外的開銷
關於臨時表和表變數的選擇
臨時表產生使用SELECT INTO和CREATE TABLE + INSERT INTO的選擇,一般情況下,SELECT INTO會比CREATE TABLE + INSERT INTO的方法快很多,但是SELECT INTO會鎖定TEMPDB的系統表SYSOBJECTS、SYSINDEXES、SYSCOLUMNS,在多用戶並發環境下,容易阻塞其他進程,所以建議,在並發系統中,盡量使用CREATE TABLE + INSERT INTO,而大數據量的單個語句使用中,使用SELECT INTO。
子查詢的用法
相關子查詢可以用IN、NOT IN、EXISTS、NOT EXISTS引入
NOT IN、NOT EXISTS的相關子查詢可以改用LEFT JOIN代替寫法
如果保證子查詢沒有重復 ,IN、EXISTS的相關子查詢可以用INNER JOIN 代替
IN``的相關子查詢用EXISTS代替
不要用 COUNT (*)的子查詢判斷是否存在記錄,最好用 LEFT` `JOIN 或者EXISTS,比如有人寫這樣的語句:
建立索引後,並不是每個查詢都會使用索引,在使用索引的情況下,索引的使用效率也會有很大的差別。只要我們在查詢語句中沒有強制指定索引,
不要對索引欄位進行運算,而要想辦法做變換
不要對索引欄位進行格式轉換
不要對索引欄位使用函數
不要對索引欄位進行多欄位連接
join關聯查詢的計算是很復雜的,特別是數據量比較大的情況下,實際情況還是拆解較快的
Join拆解的核心就是利用In關鍵字
要麼用空間換時間,要麼用時間換空間
多表連接的連接條件對索引的選擇有著重要的意義,所以我們在寫連接條件條件的時候需要特別注意。
A、多表連接的時候,連接條件必須寫全,寧可重復,不要缺漏。
B、連接條件盡量使用聚集索引
C、注意ON、WHERE和HAVING部分條件的區別
ON是最先執行, WHERE次之,HAVING最後,因為ON是先把不符合條件的記錄過濾後才進行統計,它就可以減少中間運算要處理的數據,按理說應該速度是最快的,WHERE也應該比 HAVING快點的,因為它過濾數據後才進行SUM,在兩個表聯接時才用ON的,所以在一個表的時候,就剩下WHERE跟HAVING比較了
考慮聯接優先順序:
(1)INNER JOIN
(2)LEFT JOIN (註:RIGHT JOIN 用 LEFT JOIN 替代)
(3)CROSS JOIN
索引並不適用於所有情況:a.少量數據;b.頻繁進行改動的欄位,不適合做索引;c.很少使用的欄位,不需要加索引
索引會提高數據查詢效率,但是會降低「增、刪、改」的效率。當不使用索引的時候,我們進行數據的增刪改,只需要操作源表即可,但是當我們添加索引後,不僅需要修改源表,也需要再次修改索引,很麻煩。
先執行順序, 是否走索引, 有無類型轉換
18000 字的SQL優化大全
步步深入:MySQL架構總覽->查詢執行流程->SQL解析順序
MySQL索引總結(4)——btree與hash區別