河北企業分布式存儲在哪裡找
⑴ IPFS是分布式存儲嗎,2019國內有哪些好的分布式存儲項目
IPFS是基於區塊鏈的,永久的、去中心化保存和共享文件的方法,是一種點對點的分布式協議。可關注杉岩數據,主要做金融、新能源、醫療、大數據等行業的數據存儲,提供整體解決方案!
⑵ 國內的分布式存儲公司有哪些
杉岩數據,專注軟體定義存儲,目前,杉岩數據軟體定義存儲系列產品主要為統一存儲平台(SandStoneUSP)、海量對象存儲(SandStoneMOS)、超融合一體機(SandStoneHyperCube),已經在政府、企業、醫療、教育、金融和運營商等多個行業近百家用戶中成功部署。杉岩數據與Intel、Mellanox和三星等基礎架構技術領導廠商均有緊密的研發合作關系,在產品創新、用戶體驗、性能及可靠性等方面將不斷提升和優化,力爭成為中國領先的軟體定義存儲領導廠商。
⑶ 什麼是分布式數據存儲
什麼是分布式存儲
分布式存儲是一種數據存儲技術,它通過網路使用企業中每台機器上的磁碟空間,這些分散的存儲資源構成了虛擬存儲設備,數據分布存儲在企業的各個角落。
分布式存儲系統,可在多個獨立設備上分發數據。傳統的網路存儲系統使用集中存儲伺服器來存儲所有數據。存儲伺服器成為系統性能的瓶頸,也是可靠性和安全性的焦點,無法滿足大規模存儲應用的需求。分布式網路存儲系統採用可擴展的系統結構,使用多個存儲伺服器共享存儲負載,利用位置伺服器定位存儲信息,不僅提高了系統的可靠性,可用性和訪問效率,而且易於擴展。
⑷ 國內的分布式存儲公司有哪些
瑞馳憑借自主可控、成熟、穩定的大數據及雲計算產品,提供豐富、完善、應需而變的全套解決方案。vCluster分布式存儲系列採用先進的分布式架構,將一個任務分給多個存儲節點並行處理,大大提高了存儲效率。我的答案能否幫你解決問題,如果能希望能採納下
⑸ 分布式存儲系統是做什麼的
一句話,是為了解決非分布式存儲系統滿足不了的存儲瓶頸、性能瓶頸而產生的。
對了非分布式存儲系統而言,數據量大、訪問量大都會導致IO瓶頸,分布式存儲通過把一個完整的數據集分片,存儲到不同的節點中,每個節點都能對外提供服務來提高整個存儲的存儲能力、處理能力、快速響應能力。
⑹ 國內一流的分布式存儲廠商有哪些
杉岩數據是其中之一。
作為一款國產分布式存儲軟體產品,技術架構上採用業內領先的全分布式高可用設計,全平台無單點故障,並且可以提供文件存儲、塊存儲和對象存儲三種不同類型的存儲模塊。
這些存儲模塊可以靈活的組合搭配,提供快速簡便的訪問方式,滿足新一代應用的敏捷開發需求,能夠根據應用的發展進行靈活的彈性擴展。
提供了全語義、跨協議數據訪問,幫助企業打通數據孤島、實現傳統應用間的數據共享,一體化極簡架構與分鍾級擴容、秒級數據檢索,加速企業上雲轉型。在數據安全和價值發掘領域,採用全國密演算法,確保數據絕對的安全。
(6)河北企業分布式存儲在哪裡找擴展閱讀:
杉岩數據優勢
1、多種數據冗餘模式
杉岩數據提供多副本和糾刪碼兩種數據冗餘策略,多副本策略以數據鏡像的方式提供數據冗餘,確保冗餘數據的完整性,同時也縮短了數據讀取路徑。
2、完善的容災體系
存儲系統支持多站點容災機制、數據跨地域存放、延展集群、非同步災備,保證數據的安全性和最高空間利用率,極大的降低RPO和RTO。
3、數據脫敏
USP採用數據脫敏技術,幫助企業提高安全性和保密等級,防止數據被濫用。同時幫助企業符合安全性規范要求,以及由管理/審計機關所要求的隱私標准。
⑺ 分布式存儲是什麼東西
關於分布式存儲實際上並沒有一個明確的定義,甚至名稱上也沒有一個統一的說法,大多數情況下稱作 Distributed Data Store 或者 Distributed Storage System。
其中維基網路中給 Distributed data store 的定義是:分布式存儲是一種計算機網路,它通常以數據復制的方式將信息存儲在多個節點中。
在網路中給出的定義是:分布式存儲系統,是將數據分散存儲在多台獨立的設備上。分布式網路存儲系統採用可擴展的系統結構,利用多台存儲伺服器分擔存儲負荷,利用位置伺服器定位存儲信息,它不但提高了系統的可靠性、可用性和存取效率,還易於擴展。
盡管各方對分布式存儲的定義並不完全相同,但有一點是統一的,就是分布式存儲將數據分散放置在多個節點中,節點通過網路互連提供存儲服務。這一點與傳統集中式存儲將數據集中放置的方式有著明顯的區分。
⑻ 如何實現企業數據 大數據平台 分布式存放
Hadoop在可伸縮性、健壯性、計算性能和成本上具有無可替代的優勢,事實上已成為當前互聯網企業主流的大數據分析平台。本文主要介紹一種基於Hadoop平台的多維分析和數據挖掘平台架構。作為一家互聯網數據分析公司,我們在海量數據的分析領域那真是被「逼上樑山」。多年來在嚴苛的業務需求和數據壓力下,我們幾乎嘗試了所有可能的大數據分析方法,最終落地於Hadoop平台之上。
1. 大數據分析大分類
Hadoop平台對業務的針對性較強,為了讓你明確它是否符合你的業務,現粗略地從幾個角度將大數據分析的業務需求分類,針對不同的具體需求,應採用不同的數據分析架構。
按照數據分析的實時性,分為實時數據分析和離線數據分析兩種。
實時數據分析一般用於金融、移動和互聯網B2C等產品,往往要求在數秒內返回上億行數據的分析,從而達到不影響用戶體驗的目的。要滿足這樣的需求,可以採用精心設計的傳統關系型資料庫組成並行處理集群,或者採用一些內存計算平台,或者採用HDD的架構,這些無疑都需要比較高的軟硬體成本。目前比較新的海量數據實時分析工具有EMC的Greenplum、SAP的HANA等。
對於大多數反饋時間要求不是那麼嚴苛的應用,比如離線統計分析、機器學習、搜索引擎的反向索引計算、推薦引擎的計算等,應採用離線分析的方式,通過數據採集工具將日誌數據導入專用的分析平台。但面對海量數據,傳統的ETL工具往往徹底失效,主要原因是數據格式轉換的開銷太大,在性能上無法滿足海量數據的採集需求。互聯網企業的海量數據採集工具,有Facebook開源的Scribe、LinkedIn開源的Kafka、淘寶開源的Timetunnel、Hadoop的Chukwa等,均可以滿足每秒數百MB的日誌數據採集和傳輸需求,並將這些數據上載到Hadoop中央系統上。
按照大數據的數據量,分為內存級別、BI級別、海量級別三種。
這里的內存級別指的是數據量不超過集群的內存最大值。不要小看今天內存的容量,Facebook緩存在內存的Memcached中的數據高達320TB,而目前的PC伺服器,內存也可以超過百GB。因此可以採用一些內存資料庫,將熱點數據常駐內存之中,從而取得非常快速的分析能力,非常適合實時分析業務。圖1是一種實際可行的MongoDB分析架構。
圖1 用於實時分析的MongoDB架構
MongoDB大集群目前存在一些穩定性問題,會發生周期性的寫堵塞和主從同步失效,但仍不失為一種潛力十足的可以用於高速數據分析的NoSQL。
此外,目前大多數服務廠商都已經推出了帶4GB以上SSD的解決方案,利用內存+SSD,也可以輕易達到內存分析的性能。隨著SSD的發展,內存數據分析必然能得到更加廣泛的應用。
BI級別指的是那些對於內存來說太大的數據量,但一般可以將其放入傳統的BI產品和專門設計的BI資料庫之中進行分析。目前主流的BI產品都有支持TB級以上的數據分析方案。種類繁多,就不具體列舉了。
海量級別指的是對於資料庫和BI產品已經完全失效或者成本過高的數據量。海量數據級別的優秀企業級產品也有很多,但基於軟硬體的成本原因,目前大多數互聯網企業採用Hadoop的HDFS分布式文件系統來存儲數據,並使用MapRece進行分析。本文稍後將主要介紹Hadoop上基於MapRece的一個多維數據分析平台。
數據分析的演算法復雜度
根據不同的業務需求,數據分析的演算法也差異巨大,而數據分析的演算法復雜度和架構是緊密關聯的。舉個例子,Redis是一個性能非常高的內存Key-Value NoSQL,它支持List和Set、SortedSet等簡單集合,如果你的數據分析需求簡單地通過排序,鏈表就可以解決,同時總的數據量不大於內存(准確地說是內存加上虛擬內存再除以2),那麼無疑使用Redis會達到非常驚人的分析性能。
還有很多易並行問題(Embarrassingly Parallel),計算可以分解成完全獨立的部分,或者很簡單地就能改造出分布式演算法,比如大規模臉部識別、圖形渲染等,這樣的問題自然是使用並行處理集群比較適合。
而大多數統計分析,機器學習問題可以用MapRece演算法改寫。MapRece目前最擅長的計算領域有流量統計、推薦引擎、趨勢分析、用戶行為分析、數據挖掘分類器、分布式索引等。
2. 面對大數據OLAP大一些問題
OLAP分析需要進行大量的數據分組和表間關聯,而這些顯然不是NoSQL和傳統資料庫的強項,往往必須使用特定的針對BI優化的資料庫。比如絕大多數針對BI優化的資料庫採用了列存儲或混合存儲、壓縮、延遲載入、對存儲數據塊的預統計、分片索引等技術。
Hadoop平台上的OLAP分析,同樣存在這個問題,Facebook針對Hive開發的RCFile數據格式,就是採用了上述的一些優化技術,從而達到了較好的數據分析性能。如圖2所示。
然而,對於Hadoop平台來說,單單通過使用Hive模仿出SQL,對於數據分析來說遠遠不夠,首先Hive雖然將HiveQL翻譯MapRece的時候進行了優化,但依然效率低下。多維分析時依然要做事實表和維度表的關聯,維度一多性能必然大幅下降。其次,RCFile的行列混合存儲模式,事實上限制死了數據格式,也就是說數據格式是針對特定分析預先設計好的,一旦分析的業務模型有所改動,海量數據轉換格式的代價是極其巨大的。最後,HiveQL對OLAP業務分析人員依然是非常不友善的,維度和度量才是直接針對業務人員的分析語言。
而且目前OLAP存在的最大問題是:業務靈活多變,必然導致業務模型隨之經常發生變化,而業務維度和度量一旦發生變化,技術人員需要把整個Cube(多維立方體)重新定義並重新生成,業務人員只能在此Cube上進行多維分析,這樣就限制了業務人員快速改變問題分析的角度,從而使所謂的BI系統成為死板的日常報表系統。
使用Hadoop進行多維分析,首先能解決上述維度難以改變的問題,利用Hadoop中數據非結構化的特徵,採集來的數據本身就是包含大量冗餘信息的。同時也可以將大量冗餘的維度信息整合到事實表中,這樣可以在冗餘維度下靈活地改變問題分析的角度。其次利用Hadoop MapRece強大的並行化處理能力,無論OLAP分析中的維度增加多少,開銷並不顯著增長。換言之,Hadoop可以支持一個巨大無比的Cube,包含了無數你想到或者想不到的維度,而且每次多維分析,都可以支持成千上百個維度,並不會顯著影響分析的性能。
而且目前OLAP存在的最大問題是:業務靈活多變,必然導致業務模型隨之經常發生變化,而業務維度和度量一旦發生變化,技術人員需要把整個Cube(多維立方體)重新定義並重新生成,業務人員只能在此Cube上進行多維分析,這樣就限制了業務人員快速改變問題分析的角度,從而使所謂的BI系統成為死板的日常報表系統。
3. 一種Hadoop多維分析平台的架構
整個架構由四大部分組成:數據採集模塊、數據冗餘模塊、維度定義模塊、並行分 析模塊。
數據採集模塊採用了Cloudera的Flume,將海量的小日誌文件進行高速傳輸和合並,並能夠確保數據的傳輸安全性。單個collector宕機之後,數據也不會丟失,並能將agent數據自動轉移到其他的colllecter處理,不會影響整個採集系統的運行。如圖5所示。
數據冗餘模塊不是必須的,但如果日誌數據中沒有足夠的維度信息,或者需要比較頻繁地增加維度,則需要定義數據冗餘模塊。通過冗餘維度定義器定義需要冗餘的維度信息和來源(資料庫、文件、內存等),並指定擴展方式,將信息寫入數據日誌中。在海量數據下,數據冗餘模塊往往成為整個系統的瓶頸,建議使用一些比較快的內存NoSQL來冗餘原始數據,並採用盡可能多的節點進行並行冗餘;或者也完全可以在Hadoop中執行批量Map,進行數據格式的轉化。
維度定義模塊是面向業務用戶的前端模塊,用戶通過可視化的定義器從數據日誌中定義維度和度量,並能自動生成一種多維分析語言,同時可以使用可視化的分析器通過GUI執行剛剛定義好的多維分析命令。
並行分析模塊接受用戶提交的多維分析命令,並將通過核心模塊將該命令解析為Map-Rece,提交給Hadoop集群之後,生成報表供報表中心展示。
核心模塊是將多維分析語言轉化為MapRece的解析器,讀取用戶定義的維度和度量,將用戶的多維分析命令翻譯成MapRece程序。核心模塊的具體邏輯如圖6所示。
圖6中根據JobConf參數進行Map和Rece類的拼裝並不復雜,難點是很多實際問題很難通過一個MapRece Job解決,必須通過多個MapRece Job組成工作流(WorkFlow),這里是最需要根據業務進行定製的部分。圖7是一個簡單的MapRece工作流的例子。
MapRece的輸出一般是統計分析的結果,數據量相較於輸入的海量數據會小很多,這樣就可以導入傳統的數據報表產品中進行展現。
⑼ 集中式存儲和分布式存儲的區別在哪裡如何選擇
如今全球數據存儲量呈現爆炸式增長,企業及互聯網數據以每年50%的速率在增長,據Gartner預測,到2020年,全球數據量將達到35ZB,等於80億塊4TB硬碟。數據結構變化給存儲系統帶來新的挑戰。非結構化數據在存儲系統中所佔據比例已接近80%。
互聯網的發展使得數據創造的主體由企業逐漸轉向個人用戶,而個人所產生的絕大部分數據均為圖片、文檔、視頻等非結構化數據;企業辦公流程更多通過網路實現,表單、票據等都實現了以非結構化為主的數字化存檔;同時,基於資料庫應用的結構化數據仍然在企業中占據重要地位,存儲大量的核心信息。
數據業務的急劇增加,傳統單一的SAN存儲或NAS存儲方式已經不適應業務發展需要。SAN存儲:成本高,不適合PB級大規模存儲系統。數據共享性不好,無法支持多用戶文件共享。NAS存儲:共享網路帶寬,並發性能差。隨系統擴展,性能會進一步下降。因此,集中式存儲再次活躍。
那麼集中式存儲和分布式存儲的有缺點分別有哪些呢?在面對二者時我們該如何選擇呢?下面我將為大家介紹和分析集中式存儲和分布式存儲的不同之處以及在應用中我們應做的選擇。
分布式和集中式存儲的選擇
集中存儲的優缺點是,物理介質集中布放;視頻流上傳到中心對機房環境要求高,要求機房空間大,承重、空調等都是需要考慮的問題。
分布存儲,集中管理的優缺點是,物理介質分布到不同的地理位置;視頻流就近上傳,對骨幹網帶寬沒有什麼要求;可採用多套低端的小容量的存儲設備分布部署,設備價格和維護成本較低;小容量設備分布部署,對機房環境要求低。