海量數據存儲問題
① 海量數據存儲與管理
正如上述,在國土資源遙感綜合調查信息中,既包含有多源、多時相、多尺度、多解析度、多類型的遙感圖像數據和基礎地理數據,也包括在項目開展過程中衍生的許多觀測和分析資料,數據量十分龐大。因此,根據數據共享的要求,在數據生產、管理、應用服務以及更新和維護過程中,如何組織和管理好這些海量數據,如何快速、全面有效地訪問和獲得所需數據,成為面臨的突出問題。在這里,採用何種方式利用現有的大型商業化關系資料庫系統高效地存儲與管理這些數據,成為能否發揮系統最大性能的關鍵所在。
傳統的GIS系統對空間數據(與空間位置、空間關系有關的數據)的存儲與管理大多採用這些商業軟體特定的文件方式,如:ArcInfo的Coverage、MapInfo的Tab、MAPGIS的WL等。如果數據量越多,這些文件就會越大,數據的處理就會越復雜,其存儲、檢索、管理也就越困難,而且其最大的缺點還在於不能進行多用戶並發操作。由此可見,用以往傳統的存儲機制去管理像遙感綜合調查這樣的海量數據,顯然難以滿足要求。而近年來發展起來的空間資料庫引擎技術則是解決海量數據存儲管理的途徑之一。
本系統建設過程中,採用了空間資料庫引擎ArcSDE+大型關系資料庫Oracle組合技術,較理想地實現了遙感綜合調查海量數據的存儲、檢索、查詢、處理。眾所周知,Oracle提供了大型資料庫環境,能夠很好地處理海量數據,而ArcSDE可將具有地理特徵的空間數據和非空間數據統一載入到Oracle中去,因此,通過ArcSDE空間資料庫引擎,可將Oracle海量數據管理功能載入到GIS系統中,並可利用Oracle的強大管理機制進行高效率的事務處理、記錄鎖定、並發控制等服務操作。
② 海量空間數據存儲
(一)空間數據存儲技術
隨著地理信息系統的發展,空間資料庫技術也得到了很大的發展,並出現了很多新的空間資料庫技術(黃釗等,2003),其中應用最廣的就是用關系資料庫管理系統(RDBMS)來管理空間數據。
用關系資料庫管理系統來管理空間數據,主要解決存儲在關系資料庫中的空間數據與應用程序之間的數據介面問題,即空間資料庫引擎(SpatialDatabase Engine)(熊麗華等,2004)。更確切地說,空間資料庫技術是解決空間數據對象中幾何屬性在關系資料庫中的存取問題,其主要任務是:
(1)用關系資料庫存儲管理空間數據;
(2)從資料庫中讀取空間數據,並轉換為GIS應用程序能夠接收和使用的格式;
(3)將GIS應用程序中的空間數據導入資料庫,交給關系資料庫管理。
空間資料庫中數據存儲主要有三種模式:拓撲關系數據存儲模式、Oracle Spatial模式和ArcSDE模式。拓撲關系數據存儲模式將空間數據存在文件中,而將屬性數據存在資料庫系統中,二者以一個關鍵字相連。這樣分離存儲的方式由於存在數據的管理和維護困難、數據訪問速度慢、多用戶數據並發共享沖突等問題而不適用於大型空間資料庫的建設。而OracleSpatial實際上只是在原來的資料庫模型上進行了空間數據模型的擴展,實現的是「點、線、面」等簡單要素的存儲和檢索,所以它並不能存儲數據之間復雜的拓撲關系,也不能建立一個空間幾何網路。ArcSDE解決了這些問題,並利用空間索引機制來提高查詢速度,利用長事務和版本機制來實現多用戶同時操縱同一類型數據,利用特殊的表結構來實現空間數據和屬性數據的無縫集成等(熊麗華等,2004)。
ArcSDE是ESRI公司開發的一個中間件產品,所謂中間件是一個軟體,它允許應用元素通過網路連接進行互操作,屏蔽其下的通訊協議、系統結構、操作系統、資料庫和其他應用服務。中間件位於客戶機/伺服器的操作系統之上,管理計算資源和網路通訊,並營造出一個相對穩定的高層應用環境,使開發人員可以集中精力於系統的上層開發,而不用過多考慮系統分布式環境下的移植性和通訊能力。因此,中間件能無縫地連入應用開發環境中,應用程序可以很容易地定位和共享中間件提供的應用邏輯和數據,易於系統集成。在分布式的網路環境下,客戶端的應用程序如果要訪問網路上某個伺服器的信息,而伺服器可能運行在不同於客戶端的操作系統和資料庫系統中。此時,客戶機的應用程序中負責尋找數據的部分只需要訪問一個數據訪問中間件,由該中間件完成網路中數據或服務的查找,然後將查找的信息返回給客戶端(萬定生等,2003)。因此,本系統實現空間資料庫存儲的基本思想就是利用ArcSDE實現各類空間數據的存儲。
目前,空間數據存儲技術已比較成熟,出現了許多類似ArcSDE功能的中間件產品,這些軟體基本上都能實現空間數據的資料庫存儲與管理,但對於海量空間數據的存儲,各種軟體性能差別較大。隨著數據量的增長,計算機在分析處理上會產生很多問題,比如數據不可能一次完全被讀入計算機的內存中進行處理。單純依賴於硬體技術,並不能滿足持續增長的數據的處理要求。因此需要在軟體上找到處理海量數據的策略,並最終通過軟硬體的結合完成對海量數據的處理。在海量數據存儲問題上,許多專家從不同側面進行過研究,Lindstrom在地形簡化中使用了外存模型(Out-of-core)技術;鍾正採用了基於數據分塊、動態調用的策略;汪國平等人在研究使用高速網路進行三維海量地形數據的實時交互瀏覽中,採用了分塊、多解析度模板建立模型等方法。這些技術、方法已經在各自系統上進行了研究和實現。本系統採用的ArcSDE軟體基本上也是採用分塊模型的方法,具體存儲和操作不需要用戶過多了解,已經由ArcSDE軟體實現。因此,對海量數據的存儲管理,更需要從數據的組織方式等方面進行設計。塔里木河流域生態環境動態監測系統採集了大量的遙感影像、正射影像等柵格結構的數據,這些數據具有很大的數據量,為適應流域空間基礎設施的管理需要,採取一種新的方式來管理、分發這些海量數據以適應各部門的快速瀏覽和管理需要。
(二)影像金字塔結構
影像資料庫的組織是影像資料庫效率的關鍵,為了獲得高效率的存取速度,在數據的組織上使用了金字塔數據結構和網格分塊數據結構。該技術主導思想如下:
(1)將資料庫中使用到的紋理處理成為大小一致的紋理塊;
(2)為每塊紋理生成5個細節等級的紋理,分別為0、1、2、3、4,其中1級紋理通過0級紋理1/4壓縮得到,2級紋理通過1級紋理1/4壓縮得到,…,以此類推;
(3)在顯示每個塊數據之前,根據顯示比例的大小,並以此決定該使用那一級的紋理;
(4)在內存中建立紋理緩沖池,使用LRU演算法進行紋理塊的調度,確保使用頻率高的紋理調度次數盡可能少。
(三)影像數據壓縮
影像數據壓縮有無損壓縮和有損壓縮兩個方法,具體採取哪種壓縮方法需根據具體情況確定。對於像元值很重要的數據,如分類數據、分析數據等採用無損壓縮(即LZ77演算法),否則採用有損壓縮(即JPEG演算法)。通過對影像數據的壓縮,一方面可以節約存儲空間,另一方面可以加快影像的讀取和顯示速度。影像數據的壓縮一般與構建金字塔同時進行,在構建影像金字塔過程中自動完成數據的壓縮。
③ 開展微型數據存儲技術創新研發搶占未來大數據存儲技術高地的建議
我國數據存儲核心技術長期落後,大數據中心按照傳統的 科技 房地產的思路將面臨資源約束。為了防止我國存儲技術「卡脖子」,節省未來海量數據存儲佔地空間,系統化整合資源解決當前中國大數據存儲技術產品的容量問題,建議國家立項 開展微型數據存儲技術創新研發 。
我國數據儲存的現狀和面臨的問題
計算機數據存儲技術是信息技術應用的核心。一切計算機應用數據都需要由物理設備來存儲,以便計算機系統進行讀寫等處理,數據應用與數據存儲恰似樹干與樹根的密切關系。伴隨著信息技術應用的持續高速發展,可以預見未來的數據量必將呈現爆炸式增長,隨之而來的海量數據存儲瓶頸問題必然日趨嚴重,加劇著數據存儲領域長期面臨的容量、安全、性能、擴充、維護、災備、監管等諸多挑戰。其中,容量困境,首當其沖。
當前痛點。 為了滿足數據存儲容量日益增長的需求,大數據存儲中心建設必不可少。放眼當下全國各地的大數據存儲中心建設,由於數據存儲基礎核心技術缺位,流行的模式是不可持續的「 科技 房地產」,即單純拓展佔地面積蓋樓建設數據中心,進而耗費寶貴自然資源。目前我國城市監控視頻圖像數據受限於數據中心存儲容量空間,一般只能保留一個月左右,相關的數據應用嚴重受制。
應用基石。 底層數據存儲是信息產業發展的基石,數據存儲技術產品是信息應用系統的架構基礎,也是我國的關鍵行業技術短板。有效的數據存儲技術產品涉及到所有信息技術應用場景:人工智慧,信息安全,智慧城市,大數據,雲計算,區塊鏈,城市大腦,雪亮工程,城市管理視頻監控,醫學影像識別,等等。
嚴峻局面。 追溯信息技術百年來的發展軌跡,中國在數據存儲基礎技術領域的貢獻幾乎為零。國內數據存儲行業主要擅長於市場側的商業應用創新,數據存儲底層管理的核心技術研發嚴重依賴國外的開源開放。缺乏基礎研發梯隊,沒有關鍵理論 探索 ;沿襲陳舊的發展思路,習於外購器件設備;底層技術積累短缺,核心創新能力薄弱;嚴峻的局面至今沒有重大改變。
危情險勢。 中國在核心存儲產品、底層支撐技術、商業應用理念上長期跟跑,遭受外部勢力釜底抽薪式的「存儲底層關鍵核心技術精準打擊」的隱患和風險極大。面對復雜多變的國際環境,一旦遭遇卡脖子,如外購存儲產品斷貨或核心技術交流封鎖,舉國上下所有涉及信息技術應用的行業領域都必然窒息。從而直接降低相關產業迭代發展速度,掣肘 社會 前進步伐,削弱國家治理能力,進而危及影響到國家的政治和 社會 穩定。
時不我待。 我們需要立即行動起來,通過立項開展微型數據存儲技術創新研發,凝聚國內外數據存儲領域資源力量,構建數據存儲專業核心技術團隊;從研發軟體定義的存儲(數據去重)技術產品入手,填補國內技術產品領域空白;啟動研發微型化(原子級)數據存儲設備,搶占未來數據存儲領域的制高點。這項舉措也是解除我國數據存儲技術產品創新研發「卡脖子」危機的最佳途徑。
開展微型數據存儲技術創新研發的思路
我國應抓住當前數據應用驅動信息技術升級換代的大數據發展 歷史 契機,凝聚國內外資源力量,構建中國數據存儲專業核心技術團隊。近期:研發部署模塊化數據去重技術產品,壓縮海量數據存儲空間需求,填補國內底層數據存儲管理技術空白。遠期:啟動研發微型數據存儲設備,搶占未來數據存儲技術領域的制高點。
從開展微型數據存儲技術創新研發入手,聚焦國際存儲技術領域的戰略性前沿技術趨勢;聯手科研院所、高等院校、生產企業、大型用戶的資源,建設國家級核心技術團隊;積極引進/培養數據存儲技術人才,研發自主可控系列產品。
1.近期跟蹤行業動態
對標國際頂級數據存儲技術產品,砥礪學習底層模塊級數據存儲去重技術,壓縮海量數據存儲空間需求,實現自主可控國產數據存儲技術管理軟體產品的商務應用。基本原理是首先識別出重復的數據模塊,然後優化存儲多個重復數據模塊中的單一模塊,以及同其它重復模塊的鏈接關系。進而減少企業級客戶存儲數據所需的物理空間佔有量,降低采購部署數據存儲設備的增量。
2.遠期重點突出推進
探索 下一代數據存儲技術,整合跨學科資源啟動開展研發微型存儲器,力圖將現有基於磁碟/光碟/磁帶的計算機數據存儲器,轉化為未來基於原子/電子運動狀態的微型化數字信息採集與存取機制。其原理是將現在耗費數百萬個原子的材料介質所表徵的一位「0」或「1」二進制計算機數據,試圖由單個原子狀態變化來表徵。於是,可以將現有數據存儲設備體積縮小數十萬乃至百萬倍,最終將佔地約足球場面積的大數據存儲倉庫縮小為攜帶型器件。
3.研發工作開展建議
開展微型數據存儲技術創新研發應該建設成為國內領先、國際一流的數據存儲技術研究機構、產業孵化溫室、以及人才培養基地。
延攬數據存儲技術專家領銜擔綱咨詢顧問。全球招聘在世界頂級數據存儲公司工作多年的業界精英加盟指導。
構建中國數據存儲技術研發團隊。採用引進師資/開設培訓課程等有效方式,積累培育國內數據存儲技術力量。
結盟矽谷存儲技術研究院。依託美國矽谷地區的數據存儲實體公司,共享數據存儲底層技術知識。
注冊成立企業運營機構。開發軟體定義存儲(數據去重)技術產品,服務數據用戶市場,遵循商務運作規律。
融資涵蓋多種基金渠道。申報獲取國家重大專項基礎項目研發資金,吸引專業投資基金加盟。首期投資約需10億元人民幣(參考國際相關工程估值:美國IBM公司同類項目投資約600億美元/10年)。
推動微型數據存儲技術創新研發的建議
我國在開展新型基礎設施建設的同時,應當抓住當前數據計算應用驅動信息技術升級換代的大數據發展 歷史 契機,建立數據存儲技術的自主知識產權體系,填補國內空白,保障數字中國建設長遠規劃實施,推進國產數據存儲產品崛起,為相關產業發展鋪路。
2.建議遠期緊跟世界主流研發創新步伐,聚焦研發原子級微型化數據存儲技術產品(2020-2040年),在2040年前研發出原子級大數據存儲技術,並逐步實現產業化。
3.建議將微型化數據存儲技術創新作為國家戰略。搭建政產學研用共建共治共享的中國數據存儲技術聯合創新平台,建設國家級重點實驗室。依託科研院所/高等院校/相關企業,奠定從微型數據存儲理論、硬體設計、軟體開發、結構設計、系統集成等一整套原子級微型數據存儲技術研發工作的基礎。
4.建議國家相關部委給予配套資金支持。加快推進原子級大數據存儲技術研發和產業化轉化。支持申報重大 科技 項目和專項扶持資金。
5.建議形成能夠長期從事數據存儲技術創新的人才隊伍。借鑒全球數據存儲技術創新研發經驗,引進海內外數據存儲技術領域頂尖科學家和工程師。在高等院校與科研院所開設數據存儲技術專業課程,搭建完善的國內人才培養體系。
6.建議立項過程不宜採用常規項目申報、審批流程,亟需特事特辦予以批准。主要是有鑒於本項目相關的科研生產領域中,國內現有技術力量薄弱分散,評估體系資源匱乏。
7.建議項目推進應當低調快速務實:不重造勢,不揚虛名,不謀近利。主要是基於當前復雜敏感的國際政治經濟形勢,預計本項目勢將關聯國家核心產業戰略布局,影響未來數十年中國數字經濟命脈與發展。
作 者:中央 財經 大學中國互聯網經濟研究院研究員 歐陽日輝
通訊員:李 翀
戰略性新興產業專題報道 辦事,「刷臉」就行
張家口敢闖敢試、先行先試,積極 探索 氫能產業創新發展的有益路徑
「東數西算」正式啟動,樞紐網路如何建設?
「十四五」浪潮下如何構建城市數據中心網路?
「我為群眾辦實事」北京市發展改革委發布第三批政策工具應用指南
大美密雲 助推新興產業發展
東方測控:打造智能製造示範工廠,引領礦山行業新未來
④ 自動駕駛下的海量數據,業界如何安全高效存儲
近幾年來,各行業紛紛跨界加入造車行列,不說傳了多年要造車的國外手機巨頭、出資純電動汽車的科技互聯網大廠,國內的科技企業也在躍躍欲試,比如阿里巴巴、華為、網路、小米和滴滴出行。
除了這些高科技企業,還有小馬智行、文遠知行、AutoX、贏徹科技和主線科技等新興的自動駕駛初創企業;超星未來、奧特貝睿、宏景智駕等專注於私家車高階自動駕駛研發的新型一級供應商;以及純電動車起家的蔚來,小鵬,理想等造車新勢力,都紛紛加入汽車產業鏈,推動了汽車電動化和智能化的進程。
西部數據資深產品市場經理額日特
也正是這些新玩家的加入,使得傳統汽車產業鏈受到了前所未有的壓力,同時也推動了傳統汽車廠商加速新技術和新應用的落地。在西部數據資深產品市場經理額日特看來,隨著汽車智能網聯的不斷推進,汽車的電子電氣架構(E/E)也隨之變化,從最初的分布式架構向域融合和中央控制單元過渡。
輪子上的智能手機,對存儲架構提出更多要求
如今,不少人業內人士都認可汽車在向“輪子上的智能手機”演變,這個轉變,讓廠商開始將越來越多的攝像頭、雷達、激光雷達等感測器、電動機,甚至乙太網、人工智慧等技術都引入汽車。
額日特認為,更多感測器的引入,網聯技術、人工智慧技術的增加,以及汽車電子電氣架構的改變,對汽車內存儲產品的要求發生了很大的變化。
“在汽車存儲領域,單車存儲的 數量將會顯著降低,容量則會顯著提升 。”額日特在不久前廣州舉辦的Auto Tech 2021上演講時指出。
Counterpoint的報告也印證了這一點,該分析機構預計,未來十年內,汽車單車的存儲容量將會達到2TB左右。“目前車內存儲主要用在智能座艙和中控系統,且燃油車以32GB為主,電動汽車一般使用64GB,或128GB,相對於2TB來說,還有一個巨大的提升空間。”額日特表示。
他分析稱,為了應對汽車電動化、智能化、網聯化,及自動化方向的發展,存儲產品也面臨這很多挑戰,主要有四個比較重大的挑戰:
一是數據 的可靠性 和 安全性 ,這是存儲廠商所面臨最基本和最嚴苛的挑戰,也是相關法規及保險責任靠量的關鍵因素。因為對於自動駕駛來說,數據的可靠性和安全性意味著生命的安全。
存儲廠商在數據可靠性和安全性方面也做了不少工作,額日特拿e.MMC、UFS和SSD來說,存儲單元是由兩個部分組成的,一部分是存儲介質Raw NAND,另一部分是控制器和固件。
為了保證更好的TBW(Total Bytes Written),即產品生命周期里能承受的總寫入數據量,存儲廠商一般都會 通過控制器和固件對底層做一個讀寫均衡 。“TBW通俗地講就是耐擦寫,意思是NAND Flash是有壽命的,如果數據手冊里規定了NAND Flash的擦寫次數是3,000次,客戶就需要考量該TBW是否滿足自己的應用需求。”
還有一個是主機鎖定 ,即在汽車主機上焊上一個內存,加了主機鎖的內存放到另外一個主機上是沒有用的,因為它已經與原來的主機做了鎖定,這樣也可以確保數據的安全。
另外,防寫也是一個很重要的功能 ,比如汽車如果出事故了,有的用戶擔心數據會被汽車廠商篡改,“我們存儲廠商在與主機廠商、Tier 1企業一起共同努力,協商一個有效的協同保護機制,確保車輛在發生事故後,在警察沒有查看數據之前,沒有任何一家,包括內存廠商都無法篡改存儲器內的數據,以確保司法監管在調查的時候的公正性和嚴肅性。”額日特表示。
二是復雜的應用場景 ,隨著電子電氣架構向域及中央控制單元轉變,應用的融合對存儲的要求也變得更加復雜,不再是單一的讀或寫。比如導航是一個讀密集型操作,行車記錄儀是一個寫密集型操作。
特別是隨著電子電氣架構的改變,融合中央控制單元的使用,使得內存需要承受更加復雜的操作系統環境。比如高通的8155平台把智能座艙、數字儀表和中控融合到了一起,此時就需要使用Hypervisor,以允許多個操作系統和應用共享同一個硬體。 但實際上,現在的內存結構,只能做到邏輯分區,不能做到物理分區。
“舉一個簡單的例子,我們現在所使用的電腦有C盤、D盤、或者E盤,實際上C、D、E盤只是邏輯分區,底層的內存是沒有做到物理分區的,這些盤存儲的數據都是打散存儲在一塊內存里,不論是哪個盤壞掉,代表的就是整個內存檔都壞了。”額日特指出。
因此,這就會帶來一個問題,比如行車記錄儀是一個需要高擦寫支持的應用,如果把行車記錄儀也融合到智能座艙內的話,做起來很容易。但要是不做物理分區,由於行車記錄儀的高擦寫,可能整個內存很快就會壞掉。
為了適應這個改變,也為了數據的更加安全,“西部數據現在可以提供一種解決方案,那就是在底層做讀寫均衡的隔離,比如 一塊內存裡面,可以分別使用 TLC 和S LC 兩種N AND F lash ,由於SLC可以支持高擦寫,因此,SLC部分就可以作為行車記錄儀的存儲。”額日特表示。
三是海量數據存儲 ,為了適應自動駕駛的需求,越來越多的雷達和攝像頭被部署在汽車上,行車過程中會產生大量的數據。
特別是自動駕駛計程車的企業對數據的存儲容量需求是很大的,現在單車一天生成的數據量在8GB左右,但實際上,現在主流汽車的存儲容量在2GB到4GB之間。
額日特以西部數據與Waymo的合作為例,西部數據在Waymo自動駕駛計程車上安裝了10塊2TB的工業級SSD,也就是說Waymo的單車存儲容量要求是20TB。其實這也是大部分自動駕駛汽車的存儲需求。
四是高性能, 雷達和攝像頭會在行車過程中產生大量的數據,為了防止數據丟失,必然需要高性能、大帶寬存儲的支持。
其實存儲產品也在通過不停地創新來獲得更高的傳輸速率。在嵌入式存儲器方面,目前汽車領域使用的主流存儲產品是e.MMC,比e.MMC更快的是UFS產品,目前汽車領域主要採用的還是UFS2.1。實際上,消費類電子已經在大規模採用UFS3.0的產品了。額日特預計汽車級UFS3.1的產品,應該會在兩年內面市。
另外,在SSD方面,目前汽車領域的SSD主要還是採用SATA介面,未來帶寬更高、速度更快的NVMe介面的SSD產品也可能會在汽車上得到應用。使用SSD的好處就是容量可以做得更大,比如UFS介面能做到的最大容量可能是512GB,但SSD可以輕松做到4TB、8TB,甚至更大。
滿足汽車需求的解決方案
據額日特介紹,西部數據可以提供從端到雲的完整解決方案,以支持當前和未來的車輛系統要求,它為多樣的應用場景和數據中心,提供了小尺寸嵌入式終端存儲和可移動存儲,用於獲取和分析從車輛收集的大量數據。他特意強調,西部數據的汽車級快閃記憶體產品通過了IATF16949認證,符合AEC-Q100標准。
產品方面,有iNAND汽車級嵌入式存快閃記憶體檔(EFD),支持UFS和e.MMC介面,具有多種容量,採用11.5×13mm的小包裝,可為汽車OEM和一級供應商提供符合其需求的選擇。比如iNAND AT EU312 是一款基於 3D NAND 技術的汽車級UFS(通用快閃記憶體存儲),具有高數據傳輸速度的UFS 2.1介面和額外的UFS 3.0汽車功能,可提供最高256GB的容量,性能是前代基於e.MMC的產品的2.5倍。AT EU312利用第5代SmartSLC 技術,可提供高性能和可靠的寫入。
其e.MMC 嵌入式快閃記憶體檔基於e.MMC 5.1 標准,採用2D或3D NAND技術。具體產品有EM122已經獲得許多汽車設計的認證並投入生產,EM132在汽車市場中容量達到了256GB。
在PCIe SSD方面,有CL SN720和CL SN520等產品,採用了PCIe Gen3 NVMe介面,容量高達2TB,耐久性高達1600 TBW。
與合作夥伴的成功案例
在本次Auto Tech 2021展會上,西部數據不僅展示了自己家的汽車存儲解決方案,也帶來了合作夥伴的一些成功案例。
有為信息展示的“主動安全智能防控車載視頻終端K5-P”解決方案。
在車載監控方面,其合作夥伴有為信息展示了“主動安全只能防控車載視頻終端K5-P”解決方案,該解決方案支持ADAS、DSM只能監控,採用了記錄儀、視頻功能、主動安全功能一體化設計。同時支持硬碟(2.5” HDD)+ SD卡(西部數據WD Purple micro SD存儲卡),雙重存儲保證數據安全;且具有硬碟防震保護機制;此外,有為信息的專利的存儲介質保護裝置,可防止任意拆卸硬碟及插拔存儲卡。加上其獨特流媒體文件系統存儲方式,保證了數據安全不被篡改。
車載信息娛樂系統方面,其合作夥伴掌銳展示了“前裝車規模組”解決方案------CS199 MT8666AV模組,該模組基於聯發科 MT8666AV晶元封裝的前裝車規級帶4G通信模組,具有功能豐富,集成度高、尺寸小、低功耗、性能優、品質穩定的特點,可滿足汽車智能化、連網化的前裝需求,幫助客戶縮短項目開發周期,減少研發投入並降低品控風險。存儲方面,採用的是西部數據iNAND AT EM132產品,是汽車市場首個基於3D TLC NAND e.MMC介面產品,採用了標准BGA封裝,容量涵蓋了從32GB到256GB,具有快速啟動、自動刷新、增強型運行健康狀態監測,支持固件在線升級和100%預燒錄,有AEC-Q100溫度2級(-40°C 至105°C)和3級(-40°C至85°C)兩種選擇。
銥斯電子展示的智能駕駛輔助系統解決方案。
此外,西部數據現場還展示了採用iNAND AT EM122的智能駕艙、智能駕駛、以及車聯網等豐富的解決方案。
西部數據公司中國區嵌入式產品銷售部門銷售總監文芳女士
西部數據公司中國區嵌入式產品銷售部門銷售總監文芳表示:“車聯網、自動駕駛等新技術的商業化落地,對汽車新四化的發展起到了巨大的推動作用,同時也對車載存儲解決方案的安全性、可靠性、大容量、高性能以及復雜的場景應用提出了更嚴苛的要求。西部數據作為數據基礎架構的領導者,提供覆蓋8GB-18TB容量,包括e.MMC/UFS/micro SD/SSD/HDD等不同規格的車規級及企業級存儲產品,支持端-邊-雲新型數據架構在汽車領域的應用,滿足當前和未來單車智能及車路協同的多樣化需求。”
未來,西部數據將不斷突破創新,以卓越的產品及解決方案賦能汽車領域的改革與發展,為人們帶來更安全、優質的駕駛體驗。
結語
近年來,汽車行業正在經歷前所未有的變革,自動駕駛不斷發展,高清3D地圖、高級輔助駕駛系統(ADAS)、自主計算機、AI、大數據、增強型信息娛樂系統、無線更新、以及V2X技術等等逐步在汽車上得到普及,而這些功能都需要板載數據存儲,未來汽車的存儲需求將會越來越大,如何滿足汽車市場的特殊需求,是存儲企業必須要考慮的,抓住汽車市場,就意味著抓住了未來。
轉載自電子發燒友 @2019
⑤ 大數據爆發性增長 存儲技術面臨難題
大數據爆發性增長 存儲技術面臨難題
隨著大數據應用的爆發性增長,大數據已經衍生出了自己獨特的架構,而且也直接推動了存儲、網路以及計算技術的發展。畢竟處理大數據這種特殊的需求是一個新的挑戰。硬體的發展最終還是由軟體需求推動的。大數據本身意味著非常多需要使用標准存儲技術來處理的數據。大數據可能由TB級(或者甚至PB級)信息組成,既包括結構化數據(資料庫、日誌、SQL等)以及非結構化數據(社交媒體帖子、感測器、多媒體數據)。此外,大部分這些數據缺乏索引或者其他組織結構,可能由很多不同文件類型組成。從目前技術發展的情況來看,大數據存儲技術的發展正面臨著以下幾個難題:
1、容量問題
這里所說的「大容量」通常可達到PB級的數據規模,因此,海量數據存儲系統也一定要有相應等級的擴展能力。與此同時,存儲系統的擴展一定要簡便,可以通過增加模塊或磁碟櫃來增加容量,甚至不需要停機。
「大數據」應用除了數據規模巨大之外,還意味著擁有龐大的文件數量。因此如何管理文件系統層累積的元數據是一個難題,處理不當的話會影響到系統的擴展能力和性能,而傳統的NAS系統就存在這一瓶頸。所幸的是,基於對象的存儲架構就不存在這個問題,它可以在一個系統中管理十億級別的文件數量,而且還不會像傳統存儲一樣遭遇元數據管理的困擾。基於對象的存儲系統還具有廣域擴展能力,可以在多個不同的地點部署並組成一個跨區域的大型存儲基礎架構。
2、延遲問題
「大數據」應用還存在實時性的問題。有很多「大數據」應用環境需要較高的IOPS性能,比如HPC高性能計算。此外,伺服器虛擬化的普及也導致了對高IOPS的需求,正如它改變了傳統IT環境一樣。為了迎接這些挑戰,各種模式的固態存儲設備應運而生,小到簡單的在伺服器內部做高速緩存,大到全固態介質的可擴展存儲系統等等都在蓬勃發展。
3、並發訪問
一旦企業認識到大數據分析應用的潛在價值,他們就會將更多的數據集納入系統進行比較,同時讓更多的人分享並使用這些數據。為了創造更多的商業價值,企業往往會綜合分析那些來自不同平台下的多種數據對象。包括全局文件系統在內的存儲基礎設施就能夠幫助用戶解決數據訪問的問題,全局文件系統允許多個主機上的多個用戶並發訪問文件數據,而這些數據則可能存儲在多個地點的多種不同類型的存儲設備上。
4、安全問題
某些特殊行業的應用,比如金融數據、醫療信息以及政府情報等都有自己的安全標准和保密性需求。雖然對於IT管理者來說這些並沒有什麼不同,而且都是必須遵從的,但是,大數據分析往往需要多類數據相互參考,而在過去並不會有這種數據混合訪問的情況,因此大數據應用也催生出一些新的、需要考慮的安全性問題。
5、成本問題
成本問題「大」,也可能意味著代價不菲。而對於那些正在使用大數據環境的企業來說,成本控制是關鍵的問題。想控製成本,就意味著我們要讓每一台設備都實現更高的「效率」,同時還要減少那些昂貴的部件。
對成本控制影響最大的因素是那些商業化的硬體設備。因此,很多初次進入這一領域的用戶以及那些應用規模最大的用戶都會定製他們自己的「硬體平台」而不是用現成的商業產品,這一舉措可以用來平衡他們在業務擴展過程中的成本控制戰略。為了適應這一需求,現在越來越多的存儲產品都提供純軟體的形式,可以直接安裝在用戶已有的、通用的或者現成的硬體設備上。此外,很多存儲軟體公司還在銷售以軟體產品為核心的軟硬一體化裝置,或者與硬體廠商結盟,推出合作型產品。
6、數據的積累
許多大數據應用都會涉及到法規遵從問題,這些法規通常要求數據要保存幾年或者幾十年。比如醫療信息通常是為了保證患者的生命安全,而財務信息通常要保存7年。而有些使用大數據存儲的用戶卻希望數據能夠保存更長的時間,因為任何數據都是歷史記錄的一部分,而且數據的分析大都是基於時間段進行的。要實現長期的數據保存,就要求存儲廠商開發出能夠持續進行數據一致性檢測的功能以及其他保證長期高可用的特性。同時還要實現數據直接在原位更新的功能需求。
7、數據的靈活性
大數據存儲系統的基礎設施規模通常都很大,因此必須經過仔細設計,才能保證存儲系統的靈活性,使其能夠隨著應用分析軟體一起擴容及擴展。在大數據存儲環境中,已經沒有必要再做數據遷移了,因為數據會同時保存在多個部署站點。一個大型的數據存儲基礎設施一旦開始投入使用,就很難再調整了,因此它必須能夠適應各種不同的應用類型和數據場景。
存儲介質正在改變,雲計算倍受青睞
存儲之於安防的地位,其已經不僅是一個設備而已,而是已經升華到了一個解決方案平台的地步。作為圖像數據和報警事件記錄的載體,存儲的重要性是不言而喻的。
安防監控應用對存儲的需求是什麼?首先,海量存儲的需求。其次,性能的要求。第三,價格的敏感度。第四,集中管理的要求。第五,網路化要求。安防監控技術發展到今天經歷了三個階段,即:模擬化、數字化、網路化。與之相適應,監控數據存儲也經歷了多個階段,即:VCR模擬數據存儲、DVR數字數據存儲,到現在的集中網路存儲,以及發展到雲存儲階段,正是在一步步迎合這種市場需求。在未來,安防監控隨著高清化,網路化,智能化的不斷發展,將對現有存儲方案帶來不斷挑戰,包括容量、帶寬的擴展問題和管理問題。那麼,基於大數據戰略的海量存儲系統--雲存儲就倍受青睞了。
基於大數據戰略的安防存儲優勢明顯
當前社會對於數據的依賴是前所未有的,數據已變成與硬資產和人同等重要的重要資料。如何存好、保護好、使用好這些海量的大數據,是安防行業面臨的重要問題之一。那麼基於大數據戰略的安防存儲其優勢何在?
目前的存儲市場上,原有的視頻監控方案容量、帶寬難以擴展。客戶往往需要采購更多更高端的設備來擴充容量,提高性能,隨之帶來的是成本的急劇增長以及系統復雜性的激增。同時,傳統的存儲模式很難在完全沒有業務停頓的情況下進行升級,擴容會對業務帶來巨大影響。其次,傳統的視頻監控方案難於管理。由於視頻監控系統一般規模較大,分布特徵明顯,大多獨立管理,這樣就把整個系統分割成了多個管理孤島,相互之間通信困難,難以協調工作,以提高整體性能。除此之外,綠色、安全等也是傳統視頻監控方案所面臨的突出問題。
基於大數據戰略的雲存儲技術與生俱來的高擴展、易管理、高安全等特性為傳統存儲面臨的問題帶來了解決的契機。利用雲存儲,用戶可以方便的進行容量、帶寬擴展,而不必停止業務,或改變系統架構。同時,雲存儲還具有高安全、低成本、綠色節能等特點。基於雲存儲的視頻監控解決方案是客戶應對挑戰很好的選擇。王宇說,進入二十一世紀,雲存儲作為一種新的存儲架構,已逐步走入應用階段,雲存儲不僅輕松突破了SAN的性能瓶頸,而且可以實現性能與容量的線性擴展,這對於擁有大量數據的安防監控用戶來說是一個新選擇。
以英特爾推出的Hadoop分布式文件系統(HDFS)為例,其提供了一個高度容錯性和高吞吐量的海量數據存儲解決方案。目前已經在各種大型在線服務和大型存儲系統中得到廣泛應用,已經成為海量數據存儲的事實標准。
隨著信息系統的快速發展,海量的信息需要可靠存儲的同時,還能被大量的使用者快速地訪問。傳統的存儲方案已經從構架上越來越難以適應近幾年來的信息系統業務的飛速發展,成為了業務發展的瓶頸和障礙。HDFS通過一個高效的分布式演算法,將數據的訪問和存儲分布在大量伺服器之中,在可靠地多備份存儲的同時還能將訪問分布在集群中的各個伺服器之上,是傳統存儲構架的一個顛覆性的發展。最重要的是,其可以滿足以下特性:可自我修復的分布式文件存儲系統,高可擴展性,無需停機動態擴容,高可靠性,數據自動檢測和復制,高吞吐量訪問,消除訪問瓶頸,使用低成本存儲和伺服器構建。
以上是小編為大家分享的關於大數據爆發性增長 存儲技術面臨難題的相關內容,更多信息可以關注環球青藤分享更多干貨
⑥ 傳統的單計算機是否能儲量海量數據
海量數據存儲方式概述
隨著信息技術的飛速發展,數據爆炸已成為一個突出問題、海量數據存儲和管理技術已經是近幾年的研究熱點之一。傳統的數據存儲與管理方式已經很難滿足海量數據存儲在在容量、性能、存儲效率和安全性等方面的要求。而且大部分數據採集系統。比如雷達回波信號數據採集、數字視頻信號處理及高碼率衛星數據信號的採集等、都要求對數據進行實時的傳輸與存儲。這就對數據採集存儲系統的採集速率、傳輸速度、存儲速度、存儲容量以及數據存儲的可靠性等方面提出了更高的要求。因此、對高速海量數據存儲技術的研究就越發顯得重要。近年來,海量數據存儲技術發展迅速、各種各樣的存儲系統不斷涌現。下面就從存儲介質、存儲模式兩個方面對海量數據存儲技術進行簡要的介紹。
海量存儲介質主要有磁帶、光碟、硬碟三大類。並在這三種儲介質的基礎上分別構成了磁帶機、光碟庫、磁碟陣列三種主要的存儲設備。此外,固態存儲和全息存儲是未來高速海量數據存儲的重要發展趨勢。磁帶機以其廉價的優勢應用普遍。光碟庫適用於保存多媒體數據和用於聯機檢索。應用也越來越廣泛,磁碟陣列由於能夠提供較高的存取速度和數據可靠性而成為實現高速海量數據存儲的主要方式。
從數據存儲的模式來看,海量存儲技術可以分為DAS(Direct Attached Storage。直接附加存儲)和網路存儲兩種,其中網路存儲又可以分為NAS(Network Attached storage, 網路附加存儲)和SAN(Storage Area Net、 Work,存儲區域網路) 。
、1、DAS採用的方式是外部數據存儲設備直接掛接在伺服器內部匯流排上(這樣I,O會佔用系統帶寬) 。存儲設備是伺服器結構的一部分。這種方案是傳統的存儲方式。主要在個人計算機和小型伺服器上使用,只能滿足數據存儲量較低的應用。不直接支持多機共享存儲。 DAS與NAS最大的不同便是。 DAS通過伺服器與網路連接、 NA S直接與網路連
接。磁帶機與磁碟陣列系統就是典型的DAS設備。
(2)NA S實際上是一個網路的附加存儲設備、它通過集線器或交換機直接連接在網路上。通過TCP、 IP協議進行通信、面向消息傳遞。 以文件的方式進行數
⑦ 海量數據存儲
存儲技術經歷了單個磁碟、磁帶、RAID到網路存儲系統的發展歷程。網路存儲技術就是將網路技術和I/O技術集成起來,利用網路的定址能力、即插即用的連接性、靈活性,存儲的高性能和高效率,提供基於網路的數據存儲和共享服務。在超大數據量的存儲管理、擴展性方面具有明顯的優勢。
典型的網路存儲技術有網路附加存儲NAS(Network Attached Storage)和存儲區域網SAN(Storage Area Networks)兩種。
1)NAS技術是網路技術在存儲領域的延伸和發展。它直接將存儲設備掛在網上,有良好的共享性、開放性。缺點是與LAN共同用物理網路,易形成擁塞,而影響性能。特別是在數據備份時,性能較低,影響在企業存儲應用中的地位。
2)SAN技術是以數據存儲為中心,使用光纖通道連接高速網路存儲的體系結構。即將數據存儲作為網路上的一個區域獨立出來。在高度的設備和數據共享基礎上,減輕網路和伺服器的負擔。因光纖通道的存儲網和LAN分開,使性能得到很大的提高,而且還提供了很高的可靠性和強大的連續業務處理能力。在SAN中系統的擴展、數據遷移、數據本地備份、遠程數據容災數據備份和數據管理等都比較方便,整個SAN成為一個統一管理的存儲池(Storage Pool)。SAN存儲設備之間通過專用通道進行通信,不佔用伺服器的資源。因此非常適合超大量數據的存儲,成為網路存儲的主流。
3)存儲虛擬化技術是將系統中各種異構的存儲設備映射為一個單一的存儲資源,對用戶完全透明,達到互操作性的目的和利用已有的硬體資源,把SAN內部的各種異構的存儲資源統一成一個單一視圖的存儲池,可根據用戶的需要方便地切割、分配。從而保持已有的投資,減少總體成本,提高存儲效率。
存儲虛擬化包括3個層次結構:基於伺服器的虛擬化存儲、基於存儲設備的虛擬化存儲和基於網路的虛擬化存儲。
1)基於伺服器的虛擬化存儲由邏輯管理軟體在主機/伺服器上完成。經過虛擬化的存儲空間可跨越多個異構的磁碟陣列,具有高度的穩定性和開放性,實現容易、簡便。但對異構環境和分散管理不太適應。
2)基於存儲設備的虛擬化存儲,因一些高端磁碟陣列本身具有智能化管理,可以實現同一陣列,供不同主機分享。其結構性能可達到最優。但實現起來價格昂貴,可操作性差。
3)基於網路的虛擬化存儲,通過使用專用的存儲管理伺服器和相應的虛擬化軟體,實現多個主機/伺服器對多個異構存儲設備之間進行訪問,達到不同主機和存儲之間真正的互連和共享,成為虛擬存儲的主要形式。根據不同結構可分為基於專用伺服器和基於存儲路由器兩種方式。①基於專用伺服器的虛擬化,是用一台伺服器專用於提供系統的虛擬化功能。根據網路拓撲結構和專用伺服器的具體功能,其虛擬化結構有對稱和非對稱兩種方式。在對稱結構中數據的傳輸與元數據訪問使用同一通路。實現簡單,對伺服器和存儲設備的影響小,對異構環境的適應性強。缺點是專用伺服器可能成為系統性能的瓶頸,影響SAN的擴展。在非對稱結構中,數據的傳輸與元數據訪問使用不同通路。應用伺服器的I/O命令先通過命令通路傳送到專用伺服器,獲取元數據和傳輸數據視圖後,再通過數據通路得到所需的數據。與對稱結構相比,提高了存儲系統的性能,增加了擴展能力。②基於存儲路由器的SAN虛擬化,存儲路由器是一種智能化設備,既具有路由器的功能,又針對I/O進行專門優化。它部署在存儲路由器上,多個存儲路由器保存著整個存儲系統中的元數據多個副本,並通過一定的更新策略保持一致性。這種結構中,因存儲路由器具有強大的協議功能,所以具有更多的優勢。能充分利用存儲資源,保護投資。能實現軟硬體隔離,並輔有大量的自動化工具,提高了虛擬伺服器的安全性,降低對技術人員的需求和成本。
⑧ 互聯網如何海量存儲數據
目前存儲海量數據的技術主要包括NoSQL、分布式文件系統、和傳統關系型資料庫。隨著互聯網行業不斷的發展,產生的數據量越來越多,並且這些數據的特點是半結構化和非結構化,數據很可能是不精確的,易變的。這樣傳統關系型資料庫就無法發揮它的優勢。因此,目前互聯網大正蔽攔行業偏向於使用NoSQL和分布式文件系統來存儲海量數據。
下面介紹下常用的NoSQL和分布式文件系統。
NoSQL
互聯網行業常用的NoSQL有:HBase、MongoDB、Couchbase、LevelDB。
HBase是ApacheHadoop的子項目,理論依據為Google論文Bigtable:開發的。HBase適合存儲半結構化或非結構化的數據。HBase的數據模型是稀疏的、分布式的、持久穩固的多維map。HBase也有行和列的概念,這是與RDBMS相同的地方,但卻又不同。HBase底層採用HDFS作為文件系統,具有高可靠性、高性能。
MongoDB是一種支持高性能數據存儲的開源文檔型資料庫。支持嵌入式數據模型以減少對資料庫系統的I/O、利用索引實現快速查詢,並且嵌入式文檔和集合也支持索引,它復制能力被稱作復制集(replicaset),提供了自動的故障遷移和數據冗餘。MongoDB的分片策略將數據分布在伺服器集群上。
Couchbase這種NoSQL有三個重滾並悔要的組件:Couchbase伺服器、CouchbaseGateway、CouchbaseLite。Couchbase伺服器,支持橫向擴展,面向文檔的資料庫,支持鍵值操作,類似於SQL查詢和內置的全文搜索;CouchbaseGateway提供了用於RESTful和流式訪問數據的應用層API。CouchbaseLite是一款面向移動設備和「邊緣」系統的嵌入式資料庫。Couchbase支持千萬級海量數據存儲
分布式文件系統
如果針對單個大文件,譬如超過100MB的文件,使用NoSQL存儲就不適當了。使用分布式文件系統的優勢在於,分布式文件系統隔離底層數據存儲和分布的細節,展示給用戶的是一個統一的邏輯視圖。常用的分布式文件系統有GoogleFileSystem、HDFS、MooseFS、Ceph、GlusterFS、Lustre等。
⑨ 單位存儲的電子數據越來越多,原來的光碟、硬碟都盛不下啦,怎麼解決電子數據的存儲問題
當前,松下、索尼、DISC等國際公司已研製出各自的藍光光存儲系統。Facebook(臉書)等互聯網巨頭也開始使用光存儲系統,來解決數據存儲問題。使用光存儲系統已成國際上解決海量數據存儲的慣常手段。在國內,北京市漢龍實業公司研發的海量數據光存儲系統以藍光光碟為管理對象,採用先進的光碟備份管理技術,可妥善解決電子數據存儲問題。想了解更多可以網路一下。