大數據的分布式存儲
⑴ 區塊鏈分布式存儲:生態大數據的存儲新模式
區塊鏈,當之無愧的2019最靚的詞,在 科技 領域閃閃發亮,在實體行業星光熠熠。
2019年的1024講話,讓區塊鏈這個詞煥然一新,以前它總是和傳銷和詐騙聯系在一起,「區塊鏈」這個詞總是蒙上一層灰色。但是如今,區塊鏈則是和實體經濟融合緊密相連,成為國家的戰略技術, 這個詞瞬間閃耀著熱情的紅色和生意盎然的綠色 。
「產業區塊鏈」在這個時代背景下應運而生, 是繼「互聯網」後的又一大熱門詞彙,核心就是區塊鏈必須和實體產業融合,脫虛向實,讓區塊鏈技術找到更多業務場景才是正道。
區塊鏈的本質就是一個資料庫,而且是採用的分布式存儲的方式。作為一名區塊鏈從業者,今天就來講講 區塊鏈的分布式存儲和生態大數據 結合後,碰撞產生的火花。
當前的存儲大多為中心化存儲,存儲在傳統的中心化伺服器。如果伺服器出現宕機或者故障,或者伺服器停止運營,則很多數據就會丟失。
比如我們在微信朋友圈發的圖片,在抖音上傳的視頻等等,都是中心化存儲。很多朋友會把東西存儲在網上,但是某天打開後,網頁呈現404,則表示存儲的東西已經不見了。
區塊鏈,作為一個分布式的資料庫,則能很好解決這方面的問題。這是由區塊鏈的技術特徵決定了的。 區塊鏈上的數字記錄,不可篡改、不可偽造,智能合約讓大家更高效地協同起來,從而建立可信的數字經濟秩序,能夠提高數據流轉效率,打破數據孤島,打造全新的存儲模式。
生態大數據,其實和我們每天的生活息息相關,比如每天的天氣預報,所吃的農產品的溯源數據等等,都是生態大數據的一部分。要來談這個結合,首先咱們來看看生態大數據存儲的特點。
伴隨著互聯網的發展,當前,生態大數據在存儲方面有具有如下特點:
從數據規模來看,生態數據體量很大,數據已經從TB級躍升到了PB級別。
隨著各類感測器技術、衛星遙感、雷達和視頻感知等技術的發展,數據不僅來源於傳統人工監測數據,還包括航空、航天和地面數據,他們一起產生了海量生態環境數據。近10年以來,生態數據以每年數百個TB的數據在增長。
生態環境大數據需要動態新數據和 歷史 數據相結合來處理,實時連續觀測尤為重要。只有實時處理分析這些動態新數據,並與已有 歷史 數據結合起來分析,才能挖掘出有用信息,為解決有關生態環境問題提供科學決策。
比如在當前城市建設中,提倡的生態環境修復、生態模型建設中,需要大量調用生態大數據進行分析、建模和制定方案。但是目前很多 歷史 數據因為存儲不當而消失,造成了數據的價值的流失。
既然生態大數據有這些特點,那麼它有哪些存儲需求呢?
當前,生態大數據面臨嚴重安全隱患,強安全的存儲對於生態大數據而言勢在必行。
大數據的安全主要包括大數據自身安全和大數據技術安全,比如在大數據的數據存儲中,由於黑客外部網路攻擊和人為操作不當造成數據信息泄露。外部攻擊包括對靜態數據和動態數據的數據傳輸攻擊、數據內容攻擊、數據管理和網路物理攻擊等。
例如,很多野外生態環境監測的海量數據需要網路傳輸,這就加大了網路攻擊的風險。如果涉及到軍用的一些生態環境數據,如果被黑客獲得這些數據,就可能推測到我國軍方的一些信息,或者獲取敏感的生態環境數據,後果不堪設想。
生態大數據的商業化應用需要整合集成政府、企業、科研院所等 社會 多來源的數據。只有不同類型的生態環境大數據相互連接、碰撞和共享,才能釋放生態環境大數據的價值。
以當前的智慧城市建設為例,很多城市都在全方位、多維度建立知識產權、種質資源、農資、農產品、病蟲害疫情等農業信息大數據中心,為農業產供銷提供全程信息服務。建設此類大數據中心,離不開各部門生態大數據的共享。
但是,生態大數據共享面臨著巨大挑戰。首先,我國生態環境大數據包括氣象、水利、生態、國土、農業、林業、交通、 社會 經濟等其他部門的大數據,涉及多領域多部門和多源數據。雖然目前這些部門已經建立了自己的數據平台,但這些平台之間互不連通,只是一個個的數據孤島。
其次,相關部門因為無法追蹤數據的軌跡,擔心數據的利益歸屬問題,便無法實現數據的共享。因此,要想挖掘隱藏在生態大數據背後的潛在價值,實現安全的數據共享是關鍵,也是生態大數據產生價值的前提和基礎。
生態大數據來之不易,是研究院所、企業、個人等 社會 來源的集體智慧。
其中,很多生態大數據涉及到了知識產權的保護。但是目前的中心化存儲無法保證知識產權的保護,無法對數據的使用進行溯源管理,容易造成知識產權的侵犯和隱私數據的泄露。
這些就是生態大數據在存儲方面的需求。在當前產業區塊鏈快速發展的今天,區塊鏈的分布式存儲是可以為生態大數據存儲提供全新的存儲方式的。 這個核心前提就是區塊鏈的分布式存儲、不可篡改和數據追蹤特性 。
把區塊鏈作為底層技術,搭建此類平台,專門存儲生態大數據,可以設置節點管理、存儲管理、用戶管理、許可管理、業務通道管理等。針對上層業務應用提供高可用和動態擴展的區塊鏈網路底層服務的實現。在這個平台的應用層,可以搭建API介面,讓整個平台的使用靈活可擴展。區塊鏈分布式存儲有如下特點:
利用區塊鏈的分布式存儲,能夠實現真正的生態大數據安全存儲。
首先,數據永不丟失。這點對於生態大數據的 歷史 數據特別友好,方便新老數據的調用和對比。
其次,數據不易被泄露或者攻擊。因為數據採取的是分布式存儲,如果遭遇攻擊,也只能得到存儲在部分節點里的數據碎片,無法完全獲得完整的數據信息或者數據段。
區塊鏈能夠實現生態數據的存儲即確權,這樣就能夠避免知識產權被侵害,實現安全共享。畢竟生態大數據的獲取,是需要生態工作者常年在野外駐守,提取數據的。
生態大數據來之不易,是很多生態工作者的工作心血和結晶,需要得到產權的保護,讓數據體現出應用價值和商業價值,保護生態工作者的工作動力,讓他們能夠深入一線,採集出更多優質的大數據。
同時,利用區塊鏈的數據安全共享機制,也能夠打破氣象、林業、濕地等部門的數據壁壘,構建安全可靠的數據共享機制,讓數據流轉更具價值。
現在有部分生態工作者,為了牟取私利,會將生態數據篡改。如果利用區塊鏈技術,則沒有那麼容易了。
利用加密技術,把存儲的數據放在分布式存儲平台進行加密處理。如果生態大數據發生變更,平台就可以記錄其不同版本,便於事後追溯和核查。
這個保護機制主要是利用了數據的不可篡改,滿足在使用生態大數據的各類業務過程中對數據的安全性的要求。
區塊鏈能夠對數據提供安全監控,記錄應用系統的操作日誌、資料庫的操作日誌數據,並加密存儲在系統上,提供日誌預警功能,對於異常情況通過區塊鏈瀏覽器展示出來,便於及時發現違規的操作和提供證據。
以上就是區塊鏈的分布式存儲能夠在生態大數據方面所起的作用。未來,肯定會出現很多針對生態大數據存儲的平台誕生。
生態大數據是智慧城市建設的重要基礎資料 ,引用區塊鏈技術,打造相關的生態大數據存儲和管理平台,能夠保證生態大數據的安全存儲和有效共享,為智慧城市建設添磚加瓦,推動產業區塊鏈的發展。
作者:Justina,微信公眾號:妙譯生花,從事於區塊鏈運營,擅長內容運營、海外媒體運營。
題圖來自Unsplash, 基於CC0協議。
⑵ 大數據的存儲
⼤數據的存儲⽅式是結構化、半結構化和⾮結構化海量數據的存儲和管理,輕型資料庫⽆法滿⾜對其存儲以及復雜的數據挖掘和分析操作,通常使⽤分布式⽂件系統、No sql 資料庫、雲資料庫等。
結構化、半結構化和⾮結構化海量數據的存儲和管理,輕型資料庫⽆法滿⾜對其存儲以及復雜的數據挖掘和分析操作,通常使⽤分布式⽂件系統、No SQL 資料庫、雲資料庫等。
1 分布式系統:分布式系統包含多個⾃主的處理單元,通過計算機⽹絡互連來協作完成分配的任務,其分⽽治之的策略能夠更好的處理⼤規模數據分析問題。
主要包含以下兩類:
1)分布式⽂件系統:存儲管理需要多種技術的協同⼯作,其中⽂件系統為其提供最底層存儲能⼒的⽀持。分布式⽂件系統 HDFS 是⼀個⾼度容錯性系統,被設計成適⽤於批量處理,能夠提供⾼吞吐量的的數據訪問。
2)分布式鍵值系統:分布式鍵值系統⽤於存儲關系簡單的半結構化數據。典型的分布式鍵值系統有 Amazon Dynamo,以及獲得⼴泛應⽤和關注的對象存儲技術(Object Storage)也可以視為鍵值系統,其存儲和管理的是對象⽽不是數據塊。
2 Nosql 資料庫:關系資料庫已經⽆法滿⾜ Web2.0 的需求。主要表現為:⽆法滿⾜海量數據的管理需求、⽆法滿⾜數據⾼並發的需求、⾼可擴展性和⾼可⽤性的功能太低。No SQL 資料庫的優勢:可以⽀持超⼤規模數據存儲,靈活的數據模型可以很好地⽀持 Web2.0 應⽤,具有強⼤的橫向擴展能⼒等,典型的 No SQL 資料庫包含以下⼏種:
3 雲資料庫:雲資料庫是基於雲計算技術發展的⼀種共享基礎架構的⽅法,是部署和虛擬化在雲計算環境中的資料庫。
⑶ 如何實現企業數據 大數據平台 分布式存放
Hadoop在可伸縮性、健壯性、計算性能和成本上具有無可替代的優勢,事實上已成為當前互聯網企業主流的大數據分析平台。本文主要介紹一種基於Hadoop平台的多維分析和數據挖掘平台架構。作為一家互聯網數據分析公司,我們在海量數據的分析領域那真是被「逼上樑山」。多年來在嚴苛的業務需求和數據壓力下,我們幾乎嘗試了所有可能的大數據分析方法,最終落地於Hadoop平台之上。
1. 大數據分析大分類
Hadoop平台對業務的針對性較強,為了讓你明確它是否符合你的業務,現粗略地從幾個角度將大數據分析的業務需求分類,針對不同的具體需求,應採用不同的數據分析架構。
按照數據分析的實時性,分為實時數據分析和離線數據分析兩種。
實時數據分析一般用於金融、移動和互聯網B2C等產品,往往要求在數秒內返回上億行數據的分析,從而達到不影響用戶體驗的目的。要滿足這樣的需求,可以採用精心設計的傳統關系型資料庫組成並行處理集群,或者採用一些內存計算平台,或者採用HDD的架構,這些無疑都需要比較高的軟硬體成本。目前比較新的海量數據實時分析工具有EMC的Greenplum、SAP的HANA等。
對於大多數反饋時間要求不是那麼嚴苛的應用,比如離線統計分析、機器學習、搜索引擎的反向索引計算、推薦引擎的計算等,應採用離線分析的方式,通過數據採集工具將日誌數據導入專用的分析平台。但面對海量數據,傳統的ETL工具往往徹底失效,主要原因是數據格式轉換的開銷太大,在性能上無法滿足海量數據的採集需求。互聯網企業的海量數據採集工具,有Facebook開源的Scribe、LinkedIn開源的Kafka、淘寶開源的Timetunnel、Hadoop的Chukwa等,均可以滿足每秒數百MB的日誌數據採集和傳輸需求,並將這些數據上載到Hadoop中央系統上。
按照大數據的數據量,分為內存級別、BI級別、海量級別三種。
這里的內存級別指的是數據量不超過集群的內存最大值。不要小看今天內存的容量,Facebook緩存在內存的Memcached中的數據高達320TB,而目前的PC伺服器,內存也可以超過百GB。因此可以採用一些內存資料庫,將熱點數據常駐內存之中,從而取得非常快速的分析能力,非常適合實時分析業務。圖1是一種實際可行的MongoDB分析架構。
圖1 用於實時分析的MongoDB架構
MongoDB大集群目前存在一些穩定性問題,會發生周期性的寫堵塞和主從同步失效,但仍不失為一種潛力十足的可以用於高速數據分析的NoSQL。
此外,目前大多數服務廠商都已經推出了帶4GB以上SSD的解決方案,利用內存+SSD,也可以輕易達到內存分析的性能。隨著SSD的發展,內存數據分析必然能得到更加廣泛的應用。
BI級別指的是那些對於內存來說太大的數據量,但一般可以將其放入傳統的BI產品和專門設計的BI資料庫之中進行分析。目前主流的BI產品都有支持TB級以上的數據分析方案。種類繁多,就不具體列舉了。
海量級別指的是對於資料庫和BI產品已經完全失效或者成本過高的數據量。海量數據級別的優秀企業級產品也有很多,但基於軟硬體的成本原因,目前大多數互聯網企業採用Hadoop的HDFS分布式文件系統來存儲數據,並使用MapRece進行分析。本文稍後將主要介紹Hadoop上基於MapRece的一個多維數據分析平台。
數據分析的演算法復雜度
根據不同的業務需求,數據分析的演算法也差異巨大,而數據分析的演算法復雜度和架構是緊密關聯的。舉個例子,Redis是一個性能非常高的內存Key-Value NoSQL,它支持List和Set、SortedSet等簡單集合,如果你的數據分析需求簡單地通過排序,鏈表就可以解決,同時總的數據量不大於內存(准確地說是內存加上虛擬內存再除以2),那麼無疑使用Redis會達到非常驚人的分析性能。
還有很多易並行問題(Embarrassingly Parallel),計算可以分解成完全獨立的部分,或者很簡單地就能改造出分布式演算法,比如大規模臉部識別、圖形渲染等,這樣的問題自然是使用並行處理集群比較適合。
而大多數統計分析,機器學習問題可以用MapRece演算法改寫。MapRece目前最擅長的計算領域有流量統計、推薦引擎、趨勢分析、用戶行為分析、數據挖掘分類器、分布式索引等。
2. 面對大數據OLAP大一些問題
OLAP分析需要進行大量的數據分組和表間關聯,而這些顯然不是NoSQL和傳統資料庫的強項,往往必須使用特定的針對BI優化的資料庫。比如絕大多數針對BI優化的資料庫採用了列存儲或混合存儲、壓縮、延遲載入、對存儲數據塊的預統計、分片索引等技術。
Hadoop平台上的OLAP分析,同樣存在這個問題,Facebook針對Hive開發的RCFile數據格式,就是採用了上述的一些優化技術,從而達到了較好的數據分析性能。如圖2所示。
然而,對於Hadoop平台來說,單單通過使用Hive模仿出SQL,對於數據分析來說遠遠不夠,首先Hive雖然將HiveQL翻譯MapRece的時候進行了優化,但依然效率低下。多維分析時依然要做事實表和維度表的關聯,維度一多性能必然大幅下降。其次,RCFile的行列混合存儲模式,事實上限制死了數據格式,也就是說數據格式是針對特定分析預先設計好的,一旦分析的業務模型有所改動,海量數據轉換格式的代價是極其巨大的。最後,HiveQL對OLAP業務分析人員依然是非常不友善的,維度和度量才是直接針對業務人員的分析語言。
而且目前OLAP存在的最大問題是:業務靈活多變,必然導致業務模型隨之經常發生變化,而業務維度和度量一旦發生變化,技術人員需要把整個Cube(多維立方體)重新定義並重新生成,業務人員只能在此Cube上進行多維分析,這樣就限制了業務人員快速改變問題分析的角度,從而使所謂的BI系統成為死板的日常報表系統。
使用Hadoop進行多維分析,首先能解決上述維度難以改變的問題,利用Hadoop中數據非結構化的特徵,採集來的數據本身就是包含大量冗餘信息的。同時也可以將大量冗餘的維度信息整合到事實表中,這樣可以在冗餘維度下靈活地改變問題分析的角度。其次利用Hadoop MapRece強大的並行化處理能力,無論OLAP分析中的維度增加多少,開銷並不顯著增長。換言之,Hadoop可以支持一個巨大無比的Cube,包含了無數你想到或者想不到的維度,而且每次多維分析,都可以支持成千上百個維度,並不會顯著影響分析的性能。
而且目前OLAP存在的最大問題是:業務靈活多變,必然導致業務模型隨之經常發生變化,而業務維度和度量一旦發生變化,技術人員需要把整個Cube(多維立方體)重新定義並重新生成,業務人員只能在此Cube上進行多維分析,這樣就限制了業務人員快速改變問題分析的角度,從而使所謂的BI系統成為死板的日常報表系統。
3. 一種Hadoop多維分析平台的架構
整個架構由四大部分組成:數據採集模塊、數據冗餘模塊、維度定義模塊、並行分 析模塊。
數據採集模塊採用了Cloudera的Flume,將海量的小日誌文件進行高速傳輸和合並,並能夠確保數據的傳輸安全性。單個collector宕機之後,數據也不會丟失,並能將agent數據自動轉移到其他的colllecter處理,不會影響整個採集系統的運行。如圖5所示。
數據冗餘模塊不是必須的,但如果日誌數據中沒有足夠的維度信息,或者需要比較頻繁地增加維度,則需要定義數據冗餘模塊。通過冗餘維度定義器定義需要冗餘的維度信息和來源(資料庫、文件、內存等),並指定擴展方式,將信息寫入數據日誌中。在海量數據下,數據冗餘模塊往往成為整個系統的瓶頸,建議使用一些比較快的內存NoSQL來冗餘原始數據,並採用盡可能多的節點進行並行冗餘;或者也完全可以在Hadoop中執行批量Map,進行數據格式的轉化。
維度定義模塊是面向業務用戶的前端模塊,用戶通過可視化的定義器從數據日誌中定義維度和度量,並能自動生成一種多維分析語言,同時可以使用可視化的分析器通過GUI執行剛剛定義好的多維分析命令。
並行分析模塊接受用戶提交的多維分析命令,並將通過核心模塊將該命令解析為Map-Rece,提交給Hadoop集群之後,生成報表供報表中心展示。
核心模塊是將多維分析語言轉化為MapRece的解析器,讀取用戶定義的維度和度量,將用戶的多維分析命令翻譯成MapRece程序。核心模塊的具體邏輯如圖6所示。
圖6中根據JobConf參數進行Map和Rece類的拼裝並不復雜,難點是很多實際問題很難通過一個MapRece Job解決,必須通過多個MapRece Job組成工作流(WorkFlow),這里是最需要根據業務進行定製的部分。圖7是一個簡單的MapRece工作流的例子。
MapRece的輸出一般是統計分析的結果,數據量相較於輸入的海量數據會小很多,這樣就可以導入傳統的數據報表產品中進行展現。
⑷ 分布式存儲和傳統存儲比較在哪些應用場景比較有優勢
1、分布式存儲優勢
分布式存儲可以使生產系統在線運行的情況下進行縱向擴展(Scale-Up)或橫向擴展(Scale-Out),且存儲系統在擴展後可以達到容量與性能均線性擴展的效果。其具有以下特性:
高性能
分布式存儲系統能夠將所有存儲節點的處理器資源、硬碟資源、網路資源進行整合,將任務切分給多台存儲節點,進行並發數據處理,避免了單個硬碟或設備造成的瓶頸,提升整個集群的處理能力。分布式存儲系統具有良好的性能擴展能力,可以滿足應用程序對存儲性能不斷增長的要求。
高擴展性
分布式存儲系統通過擴展集群存儲節點規模從而提高系統存儲容量、計算和性能的能力,通過增加和升級伺服器硬體,或者指通過增加存儲節點數量來提升服務能力。分布式存儲系統支持在線增加存儲節點,對前端業務透明,系統整體性能與存儲節點數量呈線性關系。
高可用性
分布式存儲系統同時基於硬體及軟體設計了高可用機制,在面對多種異常時(如存儲節點宕機、網路中斷、硬碟故障、數據損壞等)仍可提供正常服務,提高分布式存儲系統硬體的可用性可以通過增加存儲節點數量或者採用多種硬體冗餘機制保證。分布式存儲系統多採用副本機制或糾刪碼機制保證數據的高可用性,副本機制可以提供較高的數據冗餘度,但會降低存儲系統有效空間的利用率,糾刪碼機制可以在保證一定數據冗餘度的情況下,大幅提高存儲系統的有效空間利用率。
高安全性
分布式存儲系統支持可靠的許可權控制及互信確認機制,同時採用私有的數據切片及數據編碼機制,可以從多重角度保證集群系統不受惡意訪問和攻擊,保護存儲數據不被竊取。
2、分布式存儲應用場景
分布式的「四高」特性,使得其在高性能計算、大數據視頻雲及大數據分析等應用場景中有著廣泛的應用。
高性能計算場景
在如氣象氣候、地質勘探、航空航天、工程計算、材料工程等領域,基於集群的高性能計算,已成為必需的輔助工具。集群系統有極強的伸縮性,可通過在集群中增加或刪減節點的方式,在不影響原有應用與計算任務的情況下,隨時增加和降低系統的處理能力。根據不同的計算模式與規模,構成集群系統的節點數可以從幾個到成千上萬個。這些業務對後端的存儲系統提出了新的需求,包括統一的存儲空間、高效率的文件檢索、高帶寬的吞吐性能,高可靠的數據安全保障等。
大數據視頻雲應用場景
隨著視頻高清技術及超高清技術的普及,視頻大數據應用場景,如雪亮工程、平安城市、廣電媒資、影視製作、視頻網站等領域,對存儲設備提出了大容量、高讀寫性能、高可靠性、低延時及可擴展性等需求。針對這樣大規模視頻數據應用場景,就需要一個技術先進、性能優越的存儲系統作為後端數據存儲的支撐者。
大數據分析應用場景
伴隨著互聯網技術及人工智慧的發展,各種基於海量用戶/數據/終端的大數據分析及人工智慧業務模式不斷涌現,同樣需要充分考慮存儲功能集成度、數據安全性、數據穩定性,系統可擴展性、性能及成本各方面因素。
在數據爆發增長的「數字時代」,軟體定義的分布式存儲是存儲技術高速發展的結晶,並具有著很大的成長空間,必將應用於更廣泛的大數據業務場景。
⑸ 第三章 大數據存儲
一,HDFS的基本特徵與構架
1.基本特徵
(1)大規模數據分布存儲能力:以分布式存儲能力和良好的可擴展性。(基於大量分布節點上的本地文件系統,構建一個邏輯上具有巨大容量的分布式文件系統,並且整個文件系統的容量可隨集群中節點的增加而線性擴展)
(2)高並發訪問能力:提供很高的數據訪問寬頻(高數據吞吐率),並且可以把帶寬的大小等比例擴展到集群中的全部節點上
(3)強大的容錯能力:(設計理念中硬體故障被視作常態)保證在經常有節點發生硬體故障的情況下正確檢測硬體故障,並且能自動從故障中快速恢復,確保數據不丟失(採用多副本數據塊形式存儲)
(4)順序式文件訪問:(大數據批處理都是大量簡單數據記錄的順序處理)對順序讀進行了優化,支持大量數據的快速順序讀出,代價是對於隨機的訪問負載較高
(5)簡單的一致性模型(一次寫多次讀):支持大量數據的一次寫入,多次讀取;不支持已寫入數據的更新操作,但允許在文件尾部添加新的數據
(6)數據塊存儲模式:默認的塊大小是64MB。好處:減少元數據的數量,允許這些數據塊通過隨機方式選擇節點,分布存儲在不同地方
2.基本框架與工作過程
(1)基本組成結構與文件訪問過程
[1]HDFS;一個建立在一組分布式伺服器節點的本地文件系統之上的分布式文件系統(採用經典主-從結構)
[2]主控節點NameNode:
1)是一個主伺服器,用來管理整個文件系統的命名空間和元數據,以及處理來自外界的文件訪問請求
2)保存了文件系統的三中元數據
命名空間:整個分布式文件系統的目錄結構
數據塊與文件名的映射表
每個數據塊副本的位置信息,每一個數據塊默認有3個副本
[3]從節點DataNode:
1)用來實際存儲和管理文件的數據塊
2)為了防止數據丟失,每個數據塊默認有3個副本,且3個副本會分別復制在不同節點上,以避免一個節點失效造成一個數據塊的徹底丟失
[4]程序訪問文件時,實際文件數據流並不會通過NameNode傳送,而是從NameNode獲得所需訪問數據塊的存儲位置信息後,直接去訪問對應的DataNode獲取數據
[5]設計好處:
1)可以允許一個文件的數據能同時在不同DataNode上並發訪問,提高數據訪問的速度
2)減少NameNode的負擔,避免使NameNode成為數據訪問瓶頸
[6]基本訪問過程:
1)首先,用戶的應用程序通過HDFS的客戶端程序將文件名發送至NameNode
2)NameNode接收到文件名之後,在HDFS目錄中檢索文件名對應的數據塊,再根據數據塊信息找到保存數據塊的DataNode地址,講這些地址回送到客戶端
3)客戶端接收到這些DataNode地址之後,與這些DataNode並行的進行數據傳輸操作,同時將操作結果的相關日誌提交到NameNode
2.數據塊
(1)為了提高硬碟的效率,文件系統中最小的數據讀寫單元是數據塊
(2)HDFS數據塊的默認大小是64MB,實際部署中,可能會更多
(3)將數據塊設置大的原因是減少定址開銷的時間
(4)當應用發起數據傳輸請求:
[1]NameNode首先檢索文件對應的數據塊信息,找到數據塊對應的DataNode
[2]DataNode根據數據塊信息在自身的存儲中尋找相應的文件,進而與應用程序之間交換數據
[3]因為檢索過程是但進行,所以要增加數據塊大小,這樣就可以減少定址的頻度和時間開銷
3.命名空間
(1)文件命名遵循「目錄/子目錄/文件」格式
(2)通過命令行或者是API可以創建目錄,並且將文件保存在目錄中。可以對文件進行創建,刪除,重命名操作
(3)命令空間由NameNode管理。所有對命名空間的改動都會被記錄
(4)允許用戶配置文件在HDFS上保存的副本數量,保存的副本數稱作「副本因子」
4.通信協議
(1)採用TCP協議作為底層的支撐協議
(2)應用協議
[1]應用可以向NameNode主動發起TCP連接
[2]應用和NameNode交互協議稱為Client協議
[3]NameNode和DataNode交互的協議稱為DataNode協議
(3)用戶和DataNode的交互是通過發起遠程調用(RPC),並由NameNode響應來完成的。另外,NameNode不會主動發起遠程過程調用請求
5.客戶端:是用戶和HDFS通信最常見的渠道,部署的HDFS都會提供客戶端
二,HDFS可靠性設計
1.HDFS數據塊多副本存儲設計
(1)採用了在系統中保存多個副本的方式保存數據,且同一個數據塊的多個副本會存放在不同節點上
(2)優點:
[1]採用多副本,可以讓客戶從不同數據塊中讀取數據,加快傳輸速度
[2]HDFS的DataNode之間通過網路傳輸數據,如果採用多個副本可以判斷數據傳輸是否出錯
[3]多副本可以保證某個DataNode失效的情況下,不會丟失數據
2.可靠性的設計實現
(1)安全模式:
[1]HDFS啟動時,NameNode進入安全模式
[2]處於安全模式的NameNode不能做任何文本操作,甚至內部的副本創建不允許
[3]NameNode需要和各個DataNode通信,獲得其中保存的數據塊信息,並對數據塊信息進行檢查
[4]只有通過了NameNode檢查,一個數據塊被認為安全。當被認為安全的數據塊所佔比例達到某個閾值,NameNode退出
(2)SecondaryNmaeNode
[1]使用它來備份NameNode元數據,以便在其失效時能從中恢復出其上的元數據
[2]它充當NameNode的一個副本,本身並不處理任何請求。
[3]作用:周期性保存NameNode的元數據
(3)心跳包和副本重新創建
[1]心跳包:位於HDFS核心的NameNode,通過周期性的活動檢查DataNode的活動
[2]檢測到DataNode失效,保存在其上的數據不可用。則其上保存的副本需要重新創建這個副本,放到另外可用的地方
(4)數據一致性
[1]採用了數據校驗和機制
[2]創建文件時,HDFS會為這個文件生成一個校驗和,校驗和文件和文件本身保存在同一空間上,
[3]傳輸數據時會將數據與校驗和一起傳輸,應用收到數據後可以進行校驗
(5)租約
[1]防止同一個文件被多個人寫入數據
[2]NameNode保證同一個文件只會發放一個允許的租約,可以有效防止出現多人寫入的情況
(6)回滾
三,HDFS文件存儲組織與讀寫
1.文件數據的存儲組織
(1)NameNode目錄結構
[1]藉助本地文件系統來保存數據,保存文件夾位置由配置選項({dfs.name.dir}/{/tmp/dfs/name})決定
[2]在NameNode的${dfs.name.dir}之下有3個文件夾和1個文件:
1)current目錄:
文件VERSION:保存了當前運行的HDFS版本信息
FsImages:是整個系統的空間鏡像文件
Edit:EditLog編輯文件
Fstime:上一次檢查點時間
2)previous.checkpoint目錄:和上一個一致,但是保存的是上一次檢查點的內容
3)image目錄:舊版本的FsImage存儲位置
4)in_use.look:NameNode鎖,只在NameNode有效(啟動並且能和DataNode正常交互)時存在。
(2)DataNode目錄結構
[1]藉助本地文件系統來保存數據。保存文件夾位置由配置選項{dfs.data.dir}決定
[2]在其之下有4個子目錄和2個文件
1)current目錄:已經成功寫入的數據塊,以及一些系統需要的文件
a)文件VERSION:保存了當前運行的HDFS版本信息
b)subdirXX:當同一目錄下文件超過一定限制,新建一個目錄,保存多出來的數據塊和元數據
2)tmp目錄和blockBeingWritten目錄:正在寫入的數據塊,是HDFS系統內部副本創建時引發的寫入操作對應的數據塊
3)detach目錄:用於DataNode升級
4)Storage目錄:防止版本不同帶來風險
5)in_user.lock文件:DataNode鎖。只有在DataNode有效時存在。
(3)CheckPointNode目錄結構:和上一個基本一致
2.數據的讀寫過程
(1)數據讀取過程
[1]首先,客戶端調用FileSystem實例的open方法,獲得這個文件對應的輸入流,在HDFS中就是DFSInputStream
[2]構造第一步的輸入流時,通過RPC遠程調用NameNode可以獲得NameNode中此文件對應的數據塊保存位置,包括這個文件副本的保存位置(註:在輸入流中會按照網路拓撲結構,根據與客戶端距離對DataNode進行簡單排序)
[3]-[4]獲得此輸入流後,客戶端調用READ方法讀取數據。輸入流選擇最近的DFSInputStream會根據前面的排序結果,選擇最近的DataNode建立連接並讀取數據。
[5]如果已達到數據塊末端,關閉這個DataNode的連接,然後重新查找下一個數據塊
[6]客戶端調用close,關閉輸入流DFSInputStream
(2)數據輸入過程
[1]-[2]:客戶端調用FileSystem實例的create方法,創建文件。檢查後,在NameNode添加文件信息,創建結束之後,HDFS會返回一個輸出流DFSDataOutputStream給客戶端
[3]調用輸出流的write方法向HDFS中對應的文件寫入數據。
數據首先會被分包,這些分包會寫入一個輸出流的內部隊列Data隊列中,接收完整數據分包,輸出流回想NameNode申請保存文件和副本數據塊的若干個DataNode
[4]DFSDataOutputStream會(根據網路拓撲結構排序)將數據傳輸給距離上最短的DataNode,這個節點接收到數據包後傳給下一個。數據在各節點之間通過管道流通,減少傳輸開銷
[5]數據節點位於不同機器上,數據需要通過網路發送。(為保證數據節點數據正確,接收到數據的節點要向發送者發送確認包)
[6]執行3-5知道數據全部寫完,DFSDataInputStream繼續等待知道所有數據寫入完畢並確認,調用complete方法通知NameNode文件寫入完成
[7]NameNode接收到complete消息之後,等待相應數量的副本寫入完畢後,告知客戶端
傳輸過程,當某個DataNode失效,HDFS執行:
1)關閉數據傳輸的管道
2)將等待ACK隊列的數據放到Data隊列頭部
3)更新正常DataNode中所有數據塊版本。當失效的DataNode重啟,之前的數據塊會因為版本不對被清除
4)在傳輸管道中刪除失效的DataNode,重新建立管道並發送數據包
4.HDFS文件系統操作命令
(1)HDFS啟動與關閉
[1]啟動過程:
1)進入到NameNode對應節點的Hadoop安裝目錄
2)執行啟動腳本:bin/start-dfs.sh
[2]關閉過程:bin/stop-dfs.sh
(2)文件操作命令格式與注意事項
[1]基本命令格式:
1)bin/hadoop dfs-cmd <args> args-> scheme://authority/path
2)args參數基本格式前面是scheme,authority是機器地址和對應埠
a)本地文件,scheme是file
b)HDFS上文件,scheme是hdfs
(3)文件操作基本格式
[1]hadoop dfs-cat URL [URL ...]
[2]作用:將參數所指示文件內容輸出到stdout
⑹ 分布式存儲是什麼
分布式存儲的話,其實就是說把一個數據分別存到不幾個地方,這樣的話,既保證了安全。有保證了,調取的速度更快。當然分布式存儲的問題就是比較浪費存儲空間。一般家用還沒有這個存儲方式的。
⑺ 分布式存儲有哪些
問題一:當前主流分布式文件系統有哪些?各有什麼優缺點 目前幾個主流的分布式文件系統除GPFS外,還有PVFS、Lustre、PanFS、GoogleFS等。
1.PVFS(Parallel Virtual File System)項目是Clemson大學為了運行linux集群而創建的一個開源項目,目前PVFS還存在以下不足:
1)單一管理節點:只有一個管理節點來管理元數據,當集群系統達到一定的規模之後,管理節點將可能出現過度繁忙的情況,這時管理節點將成為系統瓶頸;
2)對數據的存儲缺乏容錯機制:當某一I/O節點無法工作時,數據將出現不可用的情況;
3)靜態配置:對PVFS的配置只能在啟動前進行,一旦系統運行則不可再更改原先的配置。
2.Lustre文件系統是一個基於對象存儲的分布式文件系統,此項目於1999年在Carnegie Mellon University啟動,Lustre也是一個開源項目。它只有兩個元數據管理節點,同PVFS類似,當系統達到一定的規模之後,管理節點會成為Lustre系統中的瓶頸。
3.PanFS(Panasas File System)是Panasas公司用於管理自己的集群存儲系統的分布式文件系統。
4.GoogleFS(Google File System)是Google公司為了滿足公司內部的數據處理需要而設計的一套分布式文件系統。
5.相對其它的文件系統,GPFS的主要優點有以下三點:
1)使用分布式鎖管理和大數據塊策略支持更大規模的集群系統,文件系統的令牌管理器為塊、inode、屬性和目錄項建立細粒度的鎖,第一個獲得鎖的客戶將負責維護相應共享對象的一致性管理,這減少了元數據伺服器的負擔;
2)擁有多個元數據伺服器,元數據也是分布式,使得元數據的管理不再是系統瓶頸;
3)令牌管理以位元組作為鎖的最小單位,也就是說除非兩個請求訪問的是同一文件的同一位元組數據,對於數據的訪問請求永遠不會沖突.
問題二:分布式存儲是什麼?選擇什麼樣的分布式存儲更好? 分布式存儲系統,是將數據分散存儲在多 *** 立的設備上。傳統的網路存儲系統採用集中的存儲伺服器存放所有數據,存儲伺服器成為系統性能的瓶頸,也是可靠性和安全性的焦點,不能滿足大規模存儲應用的需要。分布式網路存儲系統採用可擴展的系統結構,利用多台存儲伺服器分擔存儲負荷,利用位置伺服器定位存儲信息,它不但提高了系統的可靠性、可用性和存取效率,還易於擴展。
聯想超融合ThinkCloud AIO超融合雲一體機是聯想針對企業級用戶推出的核心產品。ThinkCloud AIO超融合雲一體機實現了對雲管理平台、計算、網路和存儲系統的無縫集成,構建了雲計算基礎設施即服務的一站式解決方案,為用戶提供了一個高度簡化的一站式基礎設施雲平台。這不僅使得業務部署上線從周縮短到天,而且與企業應用軟體、中間件及資料庫軟體完全解耦,能夠有效提升企業IT基礎設施運維管理的效率和關鍵應用的性能
問題三:什麼是分布式存儲系統? 就是將數據分散存儲在多 *** 立的設備上
問題四:什麼是分布式數據存儲 定義:
分布式資料庫是指利用高速計算機網路將物理上分散的多個數據存儲單元連接起來組成一個邏輯上統一的資料庫。分布式資料庫的基本思想是將原來集中式資料庫中的數據分散存儲到多個通過網路連接的數據存儲節點上,以獲取更大的存儲容量和更高的並發訪問量。近年來,隨著數據量的高速增長,分布式資料庫技術也得到了快速的發展,傳統的關系型資料庫開始從集中式模型向分布式架構發展,基於關系型的分布式資料庫在保留了傳統資料庫的數據模型和基本特徵下,從集中式存儲走向分布式存儲,從集中式計算走向分布式計算。
特點:
1.高可擴展性:分布式資料庫必須具有高可擴展性,能夠動態地增添存儲節點以實現存儲容量的線性擴展。
2 高並發性:分布式資料庫必須及時響應大規模用戶的讀/寫請求,能對海量數據進行隨機讀/寫。
3. 高可用性:分布式資料庫必須提供容錯機制,能夠實現對數據的冗餘備份,保證數據和服務的高度可靠性。
問題五:分布式文件系統有哪些主要的類別? 分布式存儲在大數據、雲計算、虛擬化場景都有勇武之地,在大部分場景還至關重要。munity.emc/message/655951 下面簡要介紹*nix平台下分布式文件系統的發展歷史:
1、單機文件系統
用於操作系統和應用程序的本地存儲。
2、網路文件系統(簡稱:NAS)
基於現有乙太網架構,實現不同伺服器之間傳統文件系統數據共享。
3、集群文件系統
在共享存儲基礎上,通過集群鎖,實現不同伺服器能夠共用一個傳統文件系統。
4、分布式文件系統
在傳統文件系統上,通過額外模塊實現數據跨伺服器分布,並且自身集成raid保護功能,可以保證多台伺服器同時訪問、修改同一個文件系統。性能優越,擴展性很好,成本低廉。
問題六:分布式文件系統和分布式資料庫有什麼不同 分布式文件系統(dfs)和分布式資料庫都支持存入,取出和刪除。但是分布式文件系統比較暴力,可以當做key/value的存取。分布式資料庫涉及精煉的數據,傳統的分布式關系型資料庫會定義數據元組的schema,存入取出刪除的粒度較小。
分布式文件系統現在比較出名的有GFS(未開源),HDFS(Hadoop distributed file system)。分布式資料庫現在出名的有Hbase,oceanbase。其中Hbase是基於HDFS,而oceanbase是自己內部實現的分布式文件系統,在此也可以說分布式資料庫以分布式文件系統做基礎存儲。
問題七:分布式存儲有哪些 華為的fusionstorage屬於分布式 您好,很高興能幫助您,首先,FusionDrive其實是一塊1TB或3TB機械硬碟跟一塊128GB三星830固態硬碟的組合。我們都知道,很多超極本同樣採用了混合型硬碟,但是固態硬碟部分的容量大都只有8GB到32GB之間,這個區間無法作為系統盤來使用,只能作
問題八:linux下常用的分布式文件系統有哪些 這他媽不是騰訊今年的筆試題么
NFS(tldp/HOWTO/NFS-HOWTO/index)
網路文件系統是FreeBSD支持的文件系統中的一種,也被稱為NFS。
NFS允許一個系統在網路上與它人共享目錄和文件。通過使用NFS, 用戶和程序可以象訪問本地文件一樣訪問遠端系統上的文件。它的好處是:
1、本地工作站使用更少的磁碟空間,因為通常的數據可以存放在一台機器上而且可以通過網路訪問到。
2、用戶不必在每個網路上機器裡面都有一個home目錄。home目錄可以被放在NFS伺服器上並且在網路上處處可用。
3、諸如軟碟機、CDROM、和ZIP之類的存儲設備可以在網路上面被別的機器使用。可以減少整個網路上的可移動介質設備的數量。
開發語言c/c++,可跨平台運行。
OpenAFS(openafs)
OpenAFS是一套開放源代碼的分布式文件系統,允許系統之間通過區域網和廣域網來分享檔案和資源。OpenAFS是圍繞一組叫做cell的文件伺服器組織的,每個伺服器的標識通常是隱藏在文件系統中,從AFS客戶機登陸的用戶將分辨不出他們在那個伺服器上運行,因為從用戶的角度上看,他們想在有識別的Unix文件系統語義的單個系統上運行。
文件系統內容通常都是跨cell復制,一便一個硬碟的失效不會損害OpenAFS客戶機上的運行。OpenAFS需要高達1GB的大容量客戶機緩存,以允許訪問經常使用的文件。它是一個十分安全的基於kerbero的系統,它使用訪問控制列表(ACL)以便可以進行細粒度的訪問,這不是基於通常的Linux和Unix安全模型。開發協議IBM Public,運行在linux下。
MooseFs(derf.homelinux)
Moose File System是一個具備容錯功能的網路分布式文件統,它將數據分布在網路中的不同伺服器上,MooseFs通過FUSE使之看起來就 是一個Unix的文件系統。但有一點問題,它還是不能解決單點故障的問題。開發語言perl,可跨平台操作。
pNFS(pnfs)
網路文件系統(Network FileSystem,NFS)是大多數區域網(LAN)的重要的組成部分。但NFS不適用於高性能計算中苛刻的輸入書櫥密集型程序,至少以前是這樣。NFS標準的罪行修改納入了Parallel NFS(pNFS),它是文件共享的並行實現,將傳輸速率提高了幾個數量級。
開發語言c/c++,運行在linu下。
googleFs
據說是一個比較不錯的一個可擴展分布式文件系統,用於大型的,分布式的,對大量數據進行訪問的應用。它運行於廉價的普通硬體上,但可以提供容錯功能,它可以給大量的用戶提供性能較高的服務。google自己開發的。
問題九:分布式存儲都有哪些,並闡述其基本實現原理 神州雲科 DCN NCS DFS2000(簡稱DFS2000)系列是面向大數據的存儲系統,採用分布式架構,真正的分布式、全對稱群集體系結構,將模塊化存儲節點與數據和存儲管理軟體相結合,跨節點的客戶端連接負載均衡,自動平衡容量和性能,優化集群資源,3-144節點無縫擴展,容量、性能歲節點增加而線性增長,在 60 秒鍾內添加一個節點以擴展性能和容量。
問題十:linux 分布式系統都有哪些? 常見的分布式文件系統有,GFS、HDFS、Lustre 、Ceph 、GridFS 、mogileFS、TFS、FastDFS等。各自適用於不同的領域。它們都不是系統級的分布式文件系統,而是應用級的分布式文件存儲服務。
GFS(Google File System)
--------------------------------------
Google公司為了滿足本公司需求而開發的基於Linux的專有分布式文件系統。。盡管Google公布了該系統的一些技術細節,但Google並沒有將該系統的軟體部分作為開源軟體發布。
下面分布式文件系統都是類 GFS的產品。
HDFS
--------------------------------------
Hadoop 實現了一個分布式文件系統(Hadoop Distributed File System),簡稱HDFS。 Hadoop是Apache Lucene創始人Doug Cutting開發的使用廣泛的文本搜索庫。它起源於Apache Nutch,後者是一個開源的網路搜索引擎,本身也是Luene項目的一部分。Aapche Hadoop架構是MapRece演算法的一種開源應用,是Google開創其帝國的重要基石。
Ceph
---------------------------------------
是加州大學聖克魯茲分校的Sage weil攻讀博士時開發的分布式文件系統。並使用Ceph完成了他的論文。
說 ceph 性能最高,C++編寫的代碼,支持Fuse,並且沒有單點故障依賴, 於是下載安裝, 由於 ceph 使用 btrfs 文件系統, 而btrfs 文件系統需要 Linux 2.6.34 以上的內核才支持。
可是ceph太不成熟了,它基於的btrfs本身就不成熟,它的官方網站上也明確指出不要把ceph用在生產環境中。
Lustre
---------------------------------------
Lustre是一個大規模的、安全可靠的,具備高可用性的集群文件系統,它是由SUN公司開發和維護的。
該項目主要的目的就是開發下一代的集群文件系統,可以支持超過10000個節點,數以PB的數據量存儲系統。
目前Lustre已經運用在一些領域,例如HP SFS產品等。
⑻ 分布式存儲是什麼
什麼是分布式存儲系統?
就是將數據分散存儲在多 *** 立的設備上
分布式存儲是什麼?選擇什麼樣的分布式存儲更好?
分布式存儲系統,是將數據分散存儲在多 *** 立的設備上。傳統的網路存儲系統採用集中的存儲伺服器存放所有數據,存儲伺服器成為系統性能的瓶頸,也是可靠性和安全性的焦點,不能滿足大規模存儲應用的需要。分布式網路存儲系統採用可擴展的系統結構,利用多台存儲伺服器分擔存儲負荷,利用位置伺服器定位存儲信息,它不但提高了系統的可靠性、可用性和存取效率,還易於擴展。
聯想超融合ThinkCloud AIO超融合雲一體機是聯想針對企業級用戶推出的核心產品。ThinkCloud AIO超融合雲一體機實現了對雲管理平台、計算、網路和存儲系統的無縫集成,構建了雲計算基礎設施即服務的一站式解決方案,為用戶提供了一個高度簡化的一站式基礎設施雲平台。這不僅使得業務部署上線從周縮短到天,而且與企業應用軟體、中間件及資料庫軟體完全解耦,能夠有效提升企業IT基礎設施運維管理的效率和關鍵應用的性能
什麼是分布式數據存儲
定義:
分布式資料庫是指利用高速計算機網路將物理上分散的多個數據存儲單元連接起來組成一個邏輯上統一的資料庫。分布式資料庫的基本思想是將原來集中式資料庫中的數據分散存儲到多個通過網路連接的數據存儲節點上,以獲取更大的存儲容量和更高的並發訪問量。近年來,隨著數據量的高速增長,分布式資料庫技術也得到了快速的發展,傳統的關系型資料庫開始從集中式模型向分布式架構發展,基於關系型的分布式資料庫在保留了傳統資料庫的數據模型和基本特徵下,從集中式存儲走向分布式存儲,從集中式計算走向分布式計算。
特點:
1.高可擴展性:分布式資料庫必須具有高可擴展性,能夠動態地增添存儲節點以實現存儲容量的線性擴展。
2 高並發性:分布式資料庫必須及時響應大規模用戶的讀/寫請求,能對海量數據進行隨機讀/寫。
3. 高可用性:分布式資料庫必須提供容錯機制,能夠實現對數據的冗餘備份,保證數據和服務的高度可靠性。
分布式塊存儲和 分布式文件存儲有是什麼區別
分布式文件系統(dfs)和分布式資料庫都支持存入,取出和刪除。但是分布式文件系統比較暴力,可以當做key/value的存取。分布式資料庫涉及精煉的數據,傳統的分布式關系型資料庫會定義數據元組的schema,存入取出刪除的粒度較小。
分布式文件系統現在比較出名的有GFS(未開源),HDFS(Hadoop distributed file system)。分布式資料庫現在出名的有Hbase,oceanbase。其中Hbase是基於HDFS,而oceanbase是自己內部實現的分布式文件系統,在此也可以說分布式資料庫以分布式文件系統做基礎存儲。
統一存儲和融合存儲以及分布式存儲的區別
統一存儲具體概念:
統一存儲,實質上是一個可以支持基於文件的網路附加存儲(NAS)以及基於數據塊的SAN的網路化的存儲架構。由於其支持不同的存儲協議為主機系統提供數據存儲,因此也被稱為多協議存儲。
基本簡介:
統一存儲(有時也稱網路統一存儲或者NUS)是一個能在單一設備上運行和管理文件和應用程序的存儲系統。為此,統一存儲系統在一個單一存儲平台上整合基於文件和基於塊的訪問,支持基於光纖通道的SAN、基於IP的SAN(iSCSI)和NAS(網路附加存儲)。
工作方式:
既然是一個集中化的磁碟陣列,那麼就支持主機系統通過IP網路進行文件級別的數據訪問,或通過光纖協議在SAN網路進行塊級別的數據訪問。同樣,iSCSI亦是一種非常通用的IP協議,只是其提供塊級別的數據訪問。這種磁碟陣列配置多埠的存儲控制器和一個管理介面,允許存儲管理員按需創建存儲池或空間,並將其提供給不同訪問類型的主機系統。最通常的協議一般都包括了NAS和FC,或iSCSI和FC。當然,也可以同時支持上述三種協議的,不過一般的存儲管理員都會選FC或iSCSI中的一種,它們都提供塊級別的訪問方式,和文件級別的訪問方式(NAS方式)組成統一存儲。
分布式存儲支持多節點,節點是什麼,一個磁碟還是一個主控?
一個節點是存儲節點的簡稱,存儲節點一般是一個存儲伺服器(必然帶控制器),伺服器之間通過高速網路互連。
現在越來越多的存儲伺服器使用arm CPU+磁碟陣列節省能耗,提高「容量能耗比」。
分布式文件系統有哪些主要的類別?
分布式存儲在大數據、雲計算、虛擬化場景都有勇武之地,在大部分場景還至關重要。munity.emc/message/655951 下面簡要介紹*nix平台下分布式文件系統的發展歷史:
1、單機文件系統
用於操作系統和應用程序的本地存儲。
2、網路文件系統(簡稱:NAS)
基於現有乙太網架構,實現不同伺服器之間傳統文件系統數據共享。
3、集群文件系統
在共享存儲基礎上,通過集群鎖,實現不同伺服器能夠共用一個傳統文件系統。
4、分布式文件系統
在傳統文件系統上,通過額外模塊實現數據跨伺服器分布,並且自身集成raid保護功能,可以保證多台伺服器同時訪問、修改同一個文件系統。性能優越,擴展性很好,成本低廉。
分布式存儲都有哪些,並闡述其基本實現原理
神州雲科 DCN NCS DFS2000(簡稱DFS2000)系列是面向大數據的存儲系統,採用分布式架構,真正的分布式、全對稱群集體系結構,將模塊化存儲節點與數據和存儲管理軟體相結合,跨節點的客戶端連接負載均衡,自動平衡容量和性能,優化集群資源,3-144節點無縫擴展,容量、性能歲節點增加而線性增長,在 60 秒鍾內添加一個節點以擴展性能和容量。
什麼是Hadoop分布式文件系統 10分
分布式文件系統(Distributed File System)是指文件系統管理的物理存儲資源不一定直接連接在本地節點上,而是通浮計算機網路與節點相連。
Hadoop是Apache軟體基金會所研發的開放源碼並行運算編程工具和分散式檔案系統,與MapRece和Google檔案系統的概念類似。
HDFS(Hadoop 分布式文件系統)是其中的一部分。
分布式文件存儲系統採用什麼方式
一。分布式Session的幾種實現方式1.基於資料庫的Session共享2.基於NFS共享文件系統3.基於memcached 的session,如何保證 memcached 本身的高可用性?4. 基於resin/tomcat web容器本身的session復制機制5. 基於TT/Redis 或 jbosscache 進行 session 共享。6. 基於cookie 進行session共享或者是:一、Session Replication 方式管理 (即session復制) 簡介:將一台機器上的Session數據廣播復制到集群中其餘機器上 使用場景:機器較少,網路流量較小 優點:實現簡單、配置較少、當網路中有機器Down掉時不影響用戶訪問 缺點:廣播式復制到其餘機器有一定廷時,帶來一定網路開銷二、Session Sticky 方式管理 簡介:即粘性Session、當用戶訪問集群中某台機器後,強制指定後續所有請求均落到此機器上 使用場景:機器數適中、對穩定性要求不是非常苛刻 優點:實現簡單、配置方便、沒有額外網路開銷 缺點:網路中有機器Down掉時、用戶Session會丟失、容易造成單點故障三、緩存集中式管理 簡介:將Session存入分布式緩存集群中的某台機器上,當用戶訪問不同節點時先從緩存中拿Session信息 使用場景:集群中機器數多、網路環境復雜優點:可靠性好 缺點:實現復雜、穩定性依賴於緩存的穩定性、Session信息放入緩存時要有合理的策略寫入二。Session和Cookie的區別和聯系以及Session的實現原理1、session保存在伺服器,客戶端不知道其中的信息;cookie保存在客戶端,伺服器能夠知道其中的信息。 2、session中保存的是對象,cookie中保存的是字元串。 3、session不能區分路徑,同一個用戶在訪問一個網站期間,所有的session在任何一個地方都可以訪問到。而cookie中如果設置了路徑參數,那麼同一個網站中不同路徑下的cookie互相是訪問不到的。 4、session需要藉助cookie才能正常 工作 。如果客戶端完全禁止cookie,session將失效。是無狀態的協議,客戶每次讀取web頁面時,伺服器都打開新的會話......