當前位置:首頁 » 存儲配置 » 存儲器直接存取通道

存儲器直接存取通道

發布時間: 2023-04-11 16:36:51

『壹』 直接存儲器存取的介紹

直接存儲器存取(Direct Memory Access)方式,即DMA方式,也稱為成組數據傳送方式。

『貳』 直接存儲器存取方式的特點

不需要CPU干預傳輸操作。直接存儲器存取方式是一種不經過CPU而直接從內存存取數據的數據交換模式前敬飢,CPU工作不受影響,其特點是不需要CPU干預傳輸操作,而是利用系統的數據總慧返線,由DMA控制器直接在外設和存稿顫儲器之間進行讀出、寫入操作,可以達到極高的傳送速率,因而越來越廣泛地用於高速I/O設備的介面。

『叄』 計算機組成原理主機與外部設備之間的數據傳送方式有哪些各有什麼什麼特點

有四種傳送方式。分別為程序查詢方式,程序中斷方式,直接存儲器存取方式(DMA),以及以及I/O通道控制方式。

程序查詢的特點:控制簡單,但外設和主機不能同時工作,系統的效率很低。

程序滑枯中斷方式特點:不僅允許主機和外設同時工作,而且允許一台主機管多台外設。完成的過程中需要許多輔助的工具,如果中斷請求過於頻繁,CPU應接不暇,速度慢。

DMA的特點:在主機和外設之間有直接的傳送通道,無需經過CPU既保證了CPU的效率,有滿足高速外設。

以及I/O通道控制方式的特點:主機,外設,通道搜讓簡可以同時工作。

(3)存儲器直接存取通道擴展閱讀


計算機的硬體是指組成計算機的各種物理設備,也就是我們所看得見、摸得著的實際物理設備。它包括計算機的主機和外部設備。


主機的組成:


1. 主板:主板就像人的血管以及細胞一樣,沒有它是運作不開的;


2. CPU:CPU你可以把它當成大腦,因為全部都是由它思考;


3. CPU風扇:這個是為了幫助CPU運行過久產生的熱能導致損壞而用的,幫它散熱;


4. 內存條:內存條,其實就是你可以當作空間,比如就像一個人一樣,在的空間越小,活動起來越不方便,所以內存越大,運作就順暢;


5. 硬碟:硬碟就是裝東西的,數據都是它在管理,沒有硬碟世褲,什麼都不能操作;


6. 電源:電源就是供電的,因為都是 要安裝額定的電流才能保證配件不超過電壓,損壞;


7. 機箱:機箱就是拿來裝以上配件的 ,裝好了才能算完整的電腦主機。

『肆』 怎麼打開DMA通道

DMA代表直接存儲器存取(Direct Memory Access)。這是允許外部設備打開某個通道,在不涉及CPU的情況下直接對存儲器進行讀/寫操作的一種辦法。這種方案減輕了CPU的負擔,使CPU可以進行執行更重要的任務,提高了設備的傳輸率及系統的整體性能。理陪液論上DMA 33 的設備傳輸率可達 33M/Sec; DMA 66 為 66M/Sec; DMA 100為 100M/Sec.;DMA133為 133MB/Sec。現在幾乎所有的主板都提供了支持DMA傳輸方式的IDE 介面而且幾乎所有的IDE硬碟也都支持DMA傳輸方式。但在實際應用中絕大多數的人都沒有用到DMA模式,或者沒有發揮它的最大性能。那麼怎樣才能讓它工作在DMA模式下呢?首先主板,硬碟要支持,數據線要支持(其中40針排線支持DMA 33模式,80針排線支蘆游物持DMA 66/100/133模式),其次要操作系統支持才可以。除此之外還要正確安裝碩泰克主板的晶元驅動程序才能真正發揮出DMA 的強大性能。
具體的設置步驟如下:點擊「我的電腦」右鍵—「屬性」—「設備管理器,雙擊「磁碟驅動器」—選擇硬碟選項—「屬性磨襪」—然後將「DMA」打勾,設置完後重新啟動電腦就可以了。

『伍』 直接存儲器存取(DMA)方式是__方式


DMA(Direct Memory Access),即直接存儲器存取,是一種快速傳送數據的機制。數據傳遞可以從適配卡到內存,從內存到適配卡或從一段內存到另一段內存。





-------------------------------------------------
DMA方式的數據傳送過程


DMA方式具有如下特點:
1、 外部設備的輸入輸出請求直接發給主儲存器。
主存儲器既可以被CPU訪問,也可以被外圍設備訪問。因此,在主存儲器中通常要有一個存儲管理部件來為各種訪問主存儲器的申請排隊,一般計算機系統把外圍設備的訪問申請安排在最高優先順序。
2、 不需要做保存現場和恢復現場等工作,從而使DMA方式的工作速度大大加快。
由於在外圍設備與主存儲器之間傳送數據不需要執行程序,因此,也不動用CPU中的數據寄存器和指令計數器等。
3、在DMA控制器中,除了需要設置數據緩沖寄存器、設備狀態寄存器或控制寄存器之外,還要設置主存儲器地址寄存器,設備地址寄存器和數據交換個數計數器。
外圍設備與主存儲器之間的整個數據交換過程全部要在硬體控制下完成。另外,由於外圍設備一般是以位元組為單位傳送的,而主存儲器是以字為單位訪問的,因此,在DMA控制器中還要有從位元組裝配成字和從字拆卸成位元組的硬體。
4、在DMA方式開始之前要對DMA控制器進行初始化,包括向DMA控制器傳送主存緩沖區首地址、設備地址、交換的數據塊的長度等,並啟動設備開始工 作。在DMA方式結束之後,要向CPU申請中斷,在中斷服務程序中對主存儲器中數據緩沖區進行後處理。如果需要繼續傳送數據的話,要再次對DMA控制器進 行初始化。
5、在DMA方式中,CPU不僅能夠與外圍設備並行工作,而且整個數據的傳送過程不需要CPU的干預。如果主存儲器的頻帶寬度足夠的話,外圍設備的工作可以絲毫不影響CPU運行它自身的程序。
DMA方式的工作流程如下:
對於輸入設備:
從輸入介質上讀一個位元組或字到DMA控制器中的數據緩沖寄存器BD中,如果輸入設備是面向字元的,則要把讀入的字元裝配成字。
若一個字還沒有裝配滿,則返回到上面;若校驗出錯,則發中斷申請;若一個字已經裝配滿,則將BD中的數據送入主存數據寄存器。
把主存地址寄存器BA(在DMA控制器中)中的地址送入主存地址寄存器,並且將BA中的地址增值至下一個字地址。
把DMA控制器內的數據交換個數計數器BC中的內容減"1"。
若BC中的內容為"0",則整個DMA數據傳送過程全部結束,否則返回到最上面繼續進行。
對於輸出設備:
把主存地址寄存器BA(在DMA控制器中)中的地址送入主存地址寄存器,並啟動主存儲器,同時將BA中的地址增值至下一個字地址。
將主存儲器數據寄存器中的數據送入DMA控制器的數據緩沖寄存器BD中。如果輸出設備是面向字元的,則要把BD中的數據拆卸字元。
把BD中數據逐個字元(對於面向字元的設備)或整個字寫到輸出介質上。
把DMA控制器內的數據交換個數計數器BC中的內容減"1"。
若BC中的內容為"0",則整個DMA數據傳送過程全部結束,否則返回到最上面繼續進行。
目前使用的DMA方式實際上有如下三種:
1、周期竊取方式
在每一條指令執行結束時,CPU測試有沒有DMA服務申請,如果有,則CPU進入一個DMA周期。在DMA周期中借用CPU完成上面所列出的DMA工作流程。包括數據和主存地址的傳送,交換個數計數器中的內容減"1",主存地址的增值及一些測試判斷等。
採用周期竊取方式時,主存儲器可以不與外圍設備直接相連接,而只與CPU連接,即仍然可以採用如圖4.4那樣的連接方式,因為外圍設備與主存儲器的數據交換與程序控制輸入輸出方式和中斷輸入輸出方式一樣都是要經過CPU的。
周期竊取方式與程序控制輸入輸出方式和中斷輸入輸出方式的不同處主要在:它不需要使用程序來完成數據的輸入或輸出,只是借用了一個CPU的周期來完成DMA流程。因此,其工作速度是很快的。
周期竊取方式的優點是硬體結構很簡單,比較容易實現。缺點是在數據輸入或輸出過程種實際上佔用了CPU的時間。
2、直接存取方式
這是一種真正的DMA方式。DMA控制器的數據傳送申請不是發向CPU,而是直接發往主存儲器。在得到主存儲器的響應之後,整個DMA工作流程全部在DMA控制器中用硬體完成。
直接存取方式的優點與缺點正好與周期竊取方式相反。
目前的多數計算機系統均採用直接存取方式工作。
3、數據塊傳送方式
在設備控制器中設置一個比較大的數據緩沖存儲器,一般要能夠存放下一個數據塊,如在軟磁碟存儲器中通常設置512個位元組的數據緩沖存儲器。與設備介質之間的數據交換在數據緩沖存儲器中進行。設備控制器與主存儲器之間的數據交換以數據塊為單位,並採用程序中斷方式進行。
數據塊傳送方式實際上並不是DMA方式,只是它在每次中斷輸入輸出過程中是以數據塊為單位獲得或發送數據的,這一點與上面兩種DMA方式相同,因此,通常也把這種輸入輸出方式歸入DMA方式。
採用數據塊傳送方式的外圍設備還有行式列印機,激光列印機,卡片閱讀機,部分繪圖儀等。

『陸』 電腦的內存是怎麼講的

分類: 電腦/網路 >> 硬體
解析:

內存,或內存儲器,又稱為主存儲器,是關繫到計算機運行性能高低的關鍵部件之一,無疑是非常重要的。為了加快系統的速度,提高系統的整體性能,我們看到,計算機中配置的內存數量越來越大,而內存的種類也越來越多。

內存新技術

計算機指令的存取沖拍時間主要取決於內存。對於現今的大多數計算機系統,內存的存取時間都是一個主要的制約系統性能提高的因素。因此在判斷某一系統的性能時,就不能單憑內存數量的大小,還要看一看其所用內存的種類,工作速度。

有關內存的名詞

關於內存的名詞眾多。為了便於讀者查閱,下面集中進行介紹。

ROM:只讀存儲器

RAM(Random Access Memory):隨機存儲器

DRAM(Dynamic RAM):動態隨機存儲器

PM RAM(Page Mode RAM):頁模式隨機存儲器(即普通內存)

FPM RAM(Fast Page Mode RAM):快速頁模式隨機存儲器

EDO RAM(Extended Data Output RAM)擴充數據輸出隨機存儲器

BEDO RAM(Burst Extended Data Output RAM):突發擴充數據輸出隨機存儲器

SDRAM(Sychronous Dynamic RAM):同步動態隨機存儲器

SRAM(Static RAM):靜態隨機存儲器

Async SRAM(Asynchronous Static RAM):非同步靜態隨機存儲器

Sync Burst SRAM(Synchronous Burst Stacic RAM):同步突發靜態隨機存儲器

PB SRAM(Pipelined Burst SRAM):管道(流水線)突發靜態隨機存儲器

Cache:高速緩存

L2 Cache(Level 2 Cache):二級高速緩存(通常由SRAM組成)

VRAM(Video RAM):視頻隨機存儲器

CVRAM(Cached Vedio RAM):緩存型視頻隨機存儲器

SVRAM(Synchronous VRAM):同步視頻隨機存儲器

CDRAM(Cached DRAM):緩存型動態隨機存儲器

EDRAM(Enhanced DRAM):增強型動態隨機存儲器

各種內存及技術特點

DRAM 動態隨機存儲器

DRAM主要用作主存儲器。長期以來,我們所用的動態隨機存儲器都是PM RAM,稍晚些的為FPM RAM。為了跟上CPU越來越快的速度,一些新類型的主存儲器被研製出來。它們是EDO RAM、BEDO RAM、SDRAM等。

DRAM晶元設計得象一個二進制位的矩陣,每一個位有一個行地址一個列地址。內存控制器要給出晶元地址才能從晶元中讀出指定位的數據。一個標明為70ns的晶元要用70ns的時間讀出一個位的數據。並且還要用額外的時間從CPU得到地址信息設置下一條指令。晶元製作技術的不斷進步使這種處理效率越來越高。

FPM RAM 快速頁模式隨機存儲器

這里的所謂「頁」,指的是DRAM晶元中存儲陣列上的2048位片斷。FPM RAM是最早的隨機和好存儲器,在過去一直是主流PC機的標准配置,以前我們在談論內存速度時所說的「杠7」,「杠6」,指的即是其存取時間為70ns,60ns。60ns的FPM RAM可用於匯流排速度為66MHz(兆赫茲)的奔騰系統(CPU主頻為100,133,166和200MHz)。

快速頁模式的內存常用於視頻卡,通常我們也叫它「DRAM」。其中一種經過特殊設計的內存的存取時間僅為48ns,這時我們就叫它VRAM。這種經過特殊設計的內存具有「雙口」,其中一個埠可直接被CPU存取,而另一散棚羨個埠可獨立地被RAM「直接存取通道」存取,這樣存儲器的「直接存取通道」不必等待CPU完成存取就可同時工作,從而比一般的DRAM要快些。

EDO RAM 擴充數據輸出隨機存儲器

在DRAM晶元之中,除存儲單元之外,還有一些附加邏輯電路,現在,人們已注意到RAM晶元的附加邏輯電路,通過增加少量的額外邏輯電路,可以提高在單位時間內的數據流量,即所謂的增加帶寬。EDO正是在這個方面作出的嘗試。擴展數據輸出(Extended data out??EDO,有時也稱為超頁模式??hyper-page-mode)DRAM,和突發式EDO(Bust EDO-BEDO)DRAM是兩種基於頁模式內存的內存技術。EDO大約1996年被引入主流PC機,從那以後成為許多系統廠商的主要內存選擇。BEDO相對更新一些,對市場的吸引還未能達到EDO的水平。

EDO的工作方式頗類似於FPM DRAM,EDO還具有比FPM DRAM更快的理想化突發式讀周期時鍾安排。這使得在66MHz匯流排上從DRAM中讀取一組由四個元素組成的數據塊時能節省3個時鍾周期。

BEDO RAM 突發擴充數據輸出隨機存儲器

BEDO RAM,就像其名字一樣,是在一個「突發動作」中讀取數據,這就是說在提供了內存地址後,CPU假定其後的數據地址,並自動把它們預取出來。這樣,在讀下三個數據中的每一個數據時,只用僅僅一個時鍾周期,CPU能夠以突發模式讀數據(採用52ns BEDO和66MHz匯流排),這種方式下指令的傳送速度就大大提高,處理器的指令隊列就能有效地填滿。現今這種RAM只被VIA晶元組580VP,590VP,860VP支持。這種真正快速的BEDO RAM也是有缺陷的,這就是它無法與頻率高於66MHz的匯流排相匹配。

SDRAM 同步動態隨機存儲器

SDRAM 可以說是最有前途的一種內部存儲器,當前這種RAM很受歡迎。目前市面上的絕大多數奔騰級主板和Pentium Ⅱ主板都支持這種內存。就像這種內存的名字所表明的,這種RAM可以使所有的輸入輸出信號保持與系統時鍾同步。而在不久以前,這只有SRAM 才能辦到。

SDRAM與系統時鍾同步,採用管道處理方式,當指定一個特定的地址,SDRAM就可讀出多個數據,即實現突發傳送。

具體來說,第一步,指定地址;第二步,把數據從存儲地址傳到輸出電路;第三步,輸出數據到外部。關鍵是以上三個步驟是各自獨立進行的,且與CPU同步,而以往的內存只有從頭到尾執行完這三個步驟才能輸出數據。這就是SDRAM高速的秘訣。SDRAM的讀寫周期為10至15ns。

SDRAM基於雙存儲體結構,內含兩個交錯的存儲陣列,當CPU從一個存儲體或陣列訪問數據的同時,另一個已准備好讀寫數據。通過兩個存儲陣列的緊密切換,讀取效率得到成倍提高。1996年推出的SDRAM最高速度可達100MHz,與中檔Pentium同步,存儲時間短達5~8ns,可將Pentium系統性能提高140%,與Pentium 100、133、166等每一檔次只能提高性能百分之幾十的CPU相比,換用SDRAM似乎是更明智的升級策略。目前市場上的奔騰級以上的主板幾乎都支持SDRAM。

SDRAM不僅可用作主存,在顯示卡專用內存方面也有廣泛應用。對顯示卡來說,數據帶寬越寬,同時處理的數據就越多,顯示的信息就越多,顯示質量也就越高。以前用一種可同時進行讀寫的雙埠視頻內存(VRAM)來提高帶寬,但這種內存成本高,應用受到很大限制。因此在一般顯示卡上,廉價的DRAM和高效的EDO DRAM應用很廣。但隨著64位顯示卡的上市,帶寬已擴大到EDO DRAM所能達到的帶寬的極限,要達到更高的1600×1200的解析度,而又盡量降低成本,就只能採用頻率達66MHz、高帶寬的SDRAM了。

SDRAM也將應用於共享內存結構(UMA),一種集成主存和顯示內存的結構。這種結構在很大程度上降低了系統成本,因為許多高性能顯示卡價格高昂,就是因為其專用顯示內存成本極高,而UMA技術將利用主存作顯示內存,不再需要增加專門顯示內存,因而降低了成本。

SRAM Statu RAM 靜態隨機存儲器

按產生時間和工作方式來分,靜態隨機存儲器也分為非同步和同步。在一定的納米製造技術下,SRAM容量比其他類型內存低,這是因為SRAM需要用更多的晶體管存儲一個位(bit),因而造價也貴得多。靜態隨機存儲器多用於二級高速緩存(Level 2 Cache)。

1. Async SRAM 非同步靜態隨機存儲器

自從第一個帶有二級高速緩存(Cache)的386計算機出現以來,這種老型號的屬於「Cache RAM(緩存型隨機存儲器)」類型的內存就開始應用了。非同步靜態隨機存儲器比DRAM快些,並依賴於CPU的時鍾,其存取速度有12ns、15ns和18ns三種,值越小,表示存取數據的速度越快。但在存取數據時,它還沒有快到能夠與CPU保持同步,CPU必須等待以匹配其速度。

2. Sync Burst SRAM同步突發靜態隨機存儲器

在計算機界存在這樣的爭論:Sync Burst SRAM 和FB SRAM 誰更快些?誠然,在匯流排速度為66MHz的系統上,Sync Burst SRAM確實是最快的,但當匯流排速度超過66MHz時(比如Cyrix公司的6x86p200+型號),Sync burst SRAM就超負荷了,大大低於PB SRAM 傳輸速度。因此用現行的Pentium主板(匯流排速度為66MHz),我們應該採用Sync Burst SRAM,這樣效率最高、速度最快。但目前的問題是:生產支持Sync Burst SRAM的主板供應商很少,所以能支持Sync Burst SRAM的主板的價格都很高。

3. PB SRAM 管道突發靜態隨機存儲器

管道(Pipeline,或流水線)的意思是:通過使用輸入輸出寄存器,一個SRAM可以形成像「管道」那樣的數據流水線傳輸模式。在裝載填充寄存器時,雖然需要一個額外的啟動周期,但寄存器一經裝載,就可產生這樣的作用:在用現行的地址提供數據的同時能提前存取下一地址。在匯流排速度為75MHz和高於75MHz時,這種內存是最快的緩存型隨機存儲器(Cache RAM)。實際上,PB SRAM可以匹配匯流排速度高達133MHz的系統。同時,在較慢的系統中,PB SRAM也並不比Sync Burst SRAM慢多少。

應用PB SRAM,可達到4.5到8ns的「地址-數據」時間。

L2 Cache 二級高速緩存

現今解決CPU與主內存之間的速度匹配的主要方法是在CPU與DRAM間加上基於SRAM的二級高速緩存,這種內存系統可以承擔85%的內存請求,而不需CPU增加額外的等待周期。

在用DOS、Windows3.1、Windows3.2和WFW3.11(Windows for Workgroups)作為主要的操作系統時,確實沒有必要設置高於256KB的L2 Cache。但自從Windows95操作系統推出以來,經測試,在系統的RAM只有16MB時,設置512KB的緩存比256KB的緩存更能大大提高系統的性能。

再者,應用多媒體軟體日益普遍,而以前的系統不能緩存大多數圖形和視頻信息,這使得CPU不斷地與速度較慢的主內存打交道,降低了系統的性能,而增加CPU的二級高速緩存就能解決這個問題。

目前,人們越來越傾向應用32位的操作系統。在多任務的操作系統中,增加L2 Cache直到2MB都具有實際意義,能夠增強系統性能,這是因為應用程序越來越大,並且越來越多的程序在同一時間運行,當CPU在多任務之間切換時,如果Cache沒有足夠大的空間來裝入所有被執行代碼,就必須從速度非常慢的主內存器獲得它所需的信息,多任務操作系統就不能充分發揮其作用。因此,在應用現代的操作系統時,在系統裝入512KB的L2 Cachee是計算機系統發展的需要。

基於以下特點,Sync Burst SRAM比Async SRAM更適合作二級高速緩存:

(1)同步於系統時鍾

(2)突發能力

(3)管道能力

以上這些特點使得微處理器在存取連續內存位置時用同步SRMA比非同步SRAM更快。目前,有些RAM供應商提供的3.3V非同步的SRAM的「時鍾到數據時間」(clock-to-data指開始加入時鍾脈沖到數據輸出的時間)為15ns,而採用類似技術的同步SRAM的「時鍾到數據時間」甚至不到6ns。

隨著匯流排速度的增加,性能價格比最佳點的SRAM技術是從非同步到同步,再到管道同步的。

但目前只有少數供應商能提供採用同步的SRAM,所以在系統性能不是非常重要時,設計者在匯流排速度為50MHz到66MHz時採用「管道同步」技術的內存是一種明智的選擇。

有些內存設計方案把Cache、DRAM、SRAM結合起來,如CDRAM、EDRAM、CVRAM、SVRAM、EDO SRAM、EDO VRAM。也有些內存設計方案在存儲器中增加了一些內置式微處理器,如智能RAM(Smart RAM)、3D RAM(用於3維視頻信號處理的RAM)、RDRAM(Rambus DRAM)、WRAM(Windows RAM,一種採用雙埠內存視頻加速技術的內存)。內存的多樣性可見一斑,不一而論。

快閃記憶體,快擦寫存儲器和鐵電體隨機存儲器

快閃記憶體是1983年推出的電可擦非易失性半導體存儲器,它採用一種非揮發性存儲技術,即若不對其施加大電壓進行擦除,可一直保持其狀態,在不加電狀態下可安全保存信息長達十年;它也具有固態電子學特性,即沒有可移動部件,抗震性能好;同時,它具有優越的性能,它的存取時間僅為30ns。與以往的電可擦存儲器EEPROM相比,快閃記憶體的最大差別是採用了塊可擦除的陣列結構,這種結構不僅使其有了快的擦除速度,而且具有了像EEPROM那樣的單管結構的高密度,由此帶來了低的製造成本和小的體積。快閃記憶體兼有了ROM和RAM二者的性能及高密度,是目前為數不多的同時具備大容量、高速度、非易失性、可在線擦寫特性的存儲器。

快閃記憶體多用於系統的BIOS、Modem(數據機)和一些網路設備(Hub、路由器)。

鐵電體隨機存儲器也採用非揮發性存儲技術,在生產中使用了鐵氧體,它優越於快閃記憶體的特點是其經過多次寫操作後性能不退化,而快閃記憶體存在退化問題。這使得鐵電體隨機存儲器更具有廣闊的前景。

各種內存條及技術特點

目前市場上計算機產品升級頻繁。CPU已進入奔騰時代,與此同時,內存系列產品的技術與性能也逐漸更新提高。

內存條的格式分30線、72線和168線。當今流行的內存條有EDO和SDRAM。現在的Pentium級以上的計算機在設計上均支持EDO和SDRAM內存條。

衡量內存條技術的一個重要指標是DRAM晶元的存取時間,常見的有60ns、70ns、80ns,數值越小,速度越快。

SIMM內存條

SIMM內存條的全稱為單列存儲器模塊,是一塊裝有3~36片DRAM的電路板。早期PC機的主存儲器採用的是雙列直插封裝(DIP)的DRAM晶元,因其安裝位置較大,不便於擴展,故現在普遍採用SIMM內存條,安裝一條SIMM相當於安裝原來的9片DIP型DRAM晶元。目前在SIMM內存條集成的多為EDO/FPM內存,其主要參數有:

1.引腳數

SIMM內存條上的引腳,俗稱為「金手指」。使用時,內存條引腳數必須與主板上SIMM槽口的針數相匹配。SIMM槽口有30針、72針兩種,相對應內存條的引腳有30線和72線兩種。在72針系統中,有奇偶校驗使用36位的內存條,無奇偶校驗使用32位的內存條;在30針的普通系統中,有奇偶校驗使用9位的內存條,無奇偶校驗則使用8位的內存條。目前30針的SIMM內存條已被淘汰。

2.容量

30線內存條常見容量有256KB、1MB和4MB。72線內存條常見容量有4MB、8MB、16MB和32MB。30針引腳系統中,8位或9位內存條的數據寬度為8位,286、386SX、486SX CPU數據寬度為16位,因此必須成對使用;386DX、486DX CPU數據寬度為32位,因此必須4條一組使用。72針引腳系統中,32位或36位內存條的數據寬度為32位,適用於386DX、486DX和Pentium(586)微機,可以單條或成對使用。

3.速率

內存條的一個重要性能指標是速率,以納秒(ns)表示,代表系統給予內存在無錯情況下作出反應的時間。一般有60ns、70ns、80ns、120ns等幾種,相應在內存條上標有「-6」、「-7」、「-8」、「-12」等字樣。這個數值越小,表示內存條速度越快。只有當內存與主板速度相匹配時才能發揮最大效率。

4.奇偶校驗

微機要求內存有奇偶校驗,但沒有奇偶校驗也能運行。奇偶校驗需要額外的內存晶元。選購內存條時常會聽到2片、3片、真3片、假3片、8片、9片等說法,這是指內存條是否帶奇偶校驗。2片和8片內存條肯定不帶奇偶校驗;3片和9片內存條應該帶奇偶校驗,但有些生產廠商為了謀取更高利潤,將壞的晶元作為奇偶校驗,被稱為假3片或假9片,假3片或假9片一般能正常使用,只是製造成本低。鑒別內存是否帶奇偶校驗比較簡單,裝好內存開機後執行BIOS SETUP程序,選擇允許奇偶校驗,如果機器可正常引導,則說明內存帶奇偶校驗,如果屏幕出現奇偶校驗錯的提示後死機,則說明內存不帶奇偶校驗。

DIMM內存條

在內存條模塊生產技術上,新型的168線DIMM內存條模塊為當今最流行的內存條,如下圖所示。DIMM是指雙在線模塊,它與早期的SIMM單在線模塊有著很大區別。

它使內存條在長度增加不多的情況下將模塊的匯流排寬度增加一倍。DIMM技術的另一個優點是能夠製作非常小的32位模塊。這就是所謂的SODIMM。它的尺寸僅是72針的SIMM模塊的一半,因此許多筆記本電腦製造商均採用SODIMM作為內存條的標准模式。

其實,無論是內存條技術的革新還是內存條模塊的改造,最終目的還是適應

廣大電腦用戶的多層次需求。世界著名的內存條生產廠商金士頓(Kingston)公司在其產品的生產上強調了專業性與針對性,根據每一種不同的系統進行特別設計。今後的市場是技術與服務並重的市場,優秀的技術革新與優質的服務保障會使計算機用戶收益無窮。

『柒』 ram存儲器的特點是什麼

FPM RAM 快速頁模式隨機存儲器 這里的所謂「頁」,指的是DRAM晶元中存儲陣列上的2048位片斷。FPM RAM是最早的隨機存儲器,在過去一直是主流PC機的標准配置,以前我們鉛碰在談論內存速度時所說的「杠7」,「杠6」,指的即是其存取時間為70ns,60ns。60ns的FPM RAM可用於匯流排速度為66MHz(兆赫茲)的奔騰系統(CPU主頻為100,133,166和200MHz)。 快速頁模式的內存常用於衫鏈視頻卡,通常我們也叫它「DRAM」。其中一種經過特殊設計的內存的存取時間僅為48ns,這時我們就叫它VRAM。這種經過特殊設計的內存具有「雙口」,其中一個埠可直接被CPU存取,而另一個埠可獨立地被RAM「直接存取通道」存取,這樣存儲器的「直接存取通道」不必等待CPU完成存取就可同時工作,從而比一般的DRAM要快些。

滿槐塌談意請採納

『捌』 直接存儲器存取的工作原理

一個設備介面試圖通過匯流排直接向另一個設備發送數據(一般是大批量的數據),它會先向CPU發送DMA請求信號。外設通過DMA的一種專門介面電路――DMA控制器(DMAC),向CPU提出接管匯流排控制權的匯流排請求,CPU收到該信號後,在當前的匯流排周期結束後,會按DMA信號的優先順序和提出DMA請求的先後順序響應DMA信號。CPU對某個設備介面響應DMA請求時,會讓出匯流排控制權。於是在DMA控制器的管理下,外設和存儲器直接進行數據交換,而不需CPU干預。數據傳送完畢後,設備介面會向CPU發送DMA結束信號,交還匯流排控制權。
實現DMA傳送的基本操作如下:
(1)外設可通過DMA控制器向CPU發出DMA請求:
(2)CPU響應DMA請求,系統轉變為DMA工作方式,並把匯流排控制權交給DMA控制器;
(3)由DMA控制器發送存儲器地址,並決定傳送數據塊的長度;
(4)執行DMA傳送;
(5)DMA操作結束,並把匯流排控制權交還CPU。

『玖』 什麼是直接內存訪問 (DMA)

DMA(Direct Memory Access),即直接存儲器存取,是一種快速傳送數據的機制。數據傳遞可以從適配卡到內存,從內存到適配卡或從一段內存到另一段內存。

利用它進行數據傳送時不需要CPU的參與。每台電腦主機板上都有DMA控制器,通常計算機對其編程,並用一個適配器上的ROM(如軟盤驅動控制器上的ROM)來儲存程序,這些程序控制DMA傳送數據。一旦控制器初始化完成,數據開始傳送,DMA就可以脫離CPU,獨立完成數據傳送。
在DMA傳送開始的短暫時間內,基本上有兩個處理器為它工作,一個執行程序代碼,一個傳送數據。利用DMA傳送數據的另一個好處是,數據直接在源地址和目的地址之間傳送,不需要中間媒介。如果通過CPU把一個位元組從適配卡傳送至內存,需要兩步操作。首先,CPU把這個位元組從適配卡讀到內部寄存器中,然後再從寄存器傳送到內存的適當地址。DMA控制器將這些操作簡化為一步,它操作匯流排上的控制信號,使寫位元組一次完成。這樣大大提高了計算機運行速度和工作效率。
計算機發展到今天,DMA已不再用於內存到內存的數據傳送,因為CPU速度非常快,做這件事,比用DMA控制還要快,但要在適配卡和內存之間傳送數據,仍然是非DMA莫屬。要從適配卡到內存傳送數據,DMA同時觸發從適配卡讀數據匯流排(即I/O讀操作)和向內存寫數據的匯流排。激活I/O讀操作就是讓適配卡把一個數據單位(通常是一個位元組或一個字)放到PC數據匯流排上,因為此時內存寫匯流排也被激活,數據就被同時從PC匯流排上拷貝到內存中。
直接內存訪問(DMA)方式是一種完全由硬體執行I/O交換的工作方式。DMA控制器從CPU完全接管對匯流排的控制。數據交換不經過CPU,而直接在內存和I/O設備之間進行。DMA控制器採用以下三種方式:
①停止CPU訪問內存:當外設要求傳送一批數據時,由DMA控制器發一個信號給CPU。DMA控制器獲得匯流排控制權後,開始進行數據傳送。一批數據傳送完畢後,DMA控制器通知CPU可以使用內存,並把匯流排控制權交還給CPU。
②周期挪用:當I/O設備沒有 DMA請求時,CPU按程序要求訪問內存:一旦 I/O設備有DMA請求,則I/O設備挪用一個或幾個周期。
③DMA與CPU交替訪內:一個CPU周期可分為2個周期,一個專供DMA控制器訪內,另一個專供CPU訪內。不需要匯流排使用權的申請、建立和歸還過程。

熱點內容
李宗瑞文件夾 發布:2025-02-13 04:27:59 瀏覽:609
phpparent的parent 發布:2025-02-13 04:18:08 瀏覽:451
小容量存儲器市場 發布:2025-02-13 04:01:11 瀏覽:371
ickeck文件夾 發布:2025-02-13 04:00:21 瀏覽:640
上傳照片文案 發布:2025-02-13 03:53:13 瀏覽:426
電腦版花雨庭怎麼調中文伺服器 發布:2025-02-13 03:32:35 瀏覽:37
linux開發android 發布:2025-02-13 03:32:34 瀏覽:486
查詢重復欄位的sql語句 發布:2025-02-13 03:12:42 瀏覽:323
8uftp上傳網站 發布:2025-02-13 03:01:57 瀏覽:243
電腦玩游戲如何配置電源 發布:2025-02-13 03:01:53 瀏覽:362