當前位置:首頁 » 存儲配置 » 存儲器的發展歷史

存儲器的發展歷史

發布時間: 2022-09-26 08:56:32

1. 信息儲存技術的發展過程

,信息儲存技術的發展過程:
1,原始社會,人們用結繩記事,或者把各種信息雕刻在石頭等物體上面
2,在奴隸社會,人們在石頭、陶器、木板、竹片等物體上面雕刻信息,這一時期有了最原始的文字,人們可以在皮革和織物、木板、竹片等上面書寫信息。
3,再後來,發明了紙張,人們用紙張來儲存信息。
4,到了近代,人們發明了照相機,於是可以用膠片來存儲信息。同一時期,人們發現了電磁感應現象,開始利用物體電磁感應的規律製造出象磁帶、唱片等來存儲信息。並且在後來進一步發展了這一技術。象現在的大容量硬碟、快閃記憶體晶元、優盤等都是基於這一原理。
5,在20世紀70年代,人們發現了使用激光來存儲信息的方式,這就是我們今天常見到的各種光碟了。


信息儲存技術:是將經過加工整理序化後的信息按照一定的格式和順序存儲在特定的載體中的一種信息活動。其目的是為了便於信息管理者和信息用戶快速地、准確地識別、定位和檢索信息。

2. 內存儲器的發展歷程

對於用過386機器的人來說,30pin的內存,我想在很多人的腦海里,一定或多或少的還留有一絲印象,這一次我們特意收集的7根30pin的內存條,並拍成圖片,怎麼樣看了以後,是不是有一種久違的感覺呀!

30pin 反面 30pin 正面

下面是一些常見內存參數的介紹:
bit 比特,內存中最小單位,也叫「位」。它只有兩個狀態分別以0和1表示

byte位元組,8個連續的比特叫做一個位元組。

ns(nanosecond)
納秒,是一秒的10億分之一。內存讀寫速度的單位,其前面數字越小表示速度越快。

72pin正面 72pin反面

72pin的內存,可以說是計算機發展史的一個經典,也正因為它的廉價,以及速度上大幅度的提升,為電腦的普及,提供了堅實的基礎。由於用的人比較多,目前在市場上還可以買得到。

SIMM(Single In-line Memory Moles)
單邊接觸內存模組。是5X86及其較早的PC中常採用的內存介面方式。在486以前,多採用30針的SIMM介面,而在Pentuim中更多的是72針的SIMM介面,或者與DIMM介面類型並存。人們通常把72線的SIMM類型內存模組直接稱為72線內存。

ECC(Error Checking and Correcting)
錯誤檢查和糾正。與奇偶校驗類似,它不但能檢測到錯誤的地方,還可以糾正絕大多數錯誤。它也是在原來的數據位上外加位來實現的,這些額外的位是用來重建錯誤數據的。只有經過內存的糾錯後,計算機操作指令才可以繼續執行。當然在糾錯是系統的性能有著明顯的降低。

EDO DRAM(Extended Data Output RAM)
擴展數據輸出內存。是Micron公司的專利技術。有72線和168線之分、5V電壓、帶寬32bit、基本速度40ns以上。傳統的DRAM和FPM DRAM在存取每一bit數據時必須輸出行地址和列地址並使其穩定一段時間後,然後才能讀寫有效的數據,而下一個bit的地址必須等待這次讀寫操作完成才能輸出。EDO DRAM不必等待資料的讀寫操作是否完成,只要規定的有效時間一到就可以准備輸出下一個地址,由此縮短了存取時間,效率比FPM DRAM高20%—30%。具有較高的性/價比,因為它的存取速度比FPM DRAM快15%,而價格才高出5%。因此,成為中、低檔Pentium級別主板的標准內存。

DIMM(Dual In-line Memory Moles)
雙邊接觸內存模組。也就是說這種類型介面內存的插板兩邊都有數據介面觸片,這種介面模式的內存廣泛應用於現在的計算機中,通常為84針,由於是雙邊的,所以共有84×2=168線接觸,所以人們常把這種內存稱為168線內存。

PC133

SDRAM(Synchronous Burst RAM)
同步突發內存。是168線、3.3V電壓、帶寬64bit、速度可達6ns。是雙存儲體結構,也就是有兩個儲存陣列,一個被CPU讀取數據的時候,另一個已經做好被讀取數據的准備,兩者相互自動切換,使得存取效率成倍提高。並且將RAM與CPU以相同時鍾頻率控制,使RAM與CPU外頻同步,取消等待時間,所以其傳輸速率比EDO DRAM快了13%。SDRAM採用了多體(Bank)存儲器結構和突發模式,能傳輸一整數據而不是一段數據。

SDRAM ECC 伺服器專用內存

RDRAM(Rambus DRAM)
是美國RAMBUS公司在RAMBUSCHANNEL技術基礎上研製的一種存儲器。用於數據存儲的字長為16位,傳輸率極速指標有望達到600MHz。以管道存儲結構支持交叉存取同時執行四條指令,單從封裝形式上看,與DRAM沒有什麼不同,但在發熱量方面與100MHz的SDRAM大致相當。因為它的圖形加速性能是EDO DRAM的3-10倍,所以目前主要應用於高檔顯卡上做顯示內存。

Direct RDRAM
是RDRAM的擴展,它使用了同樣的RSL,但介面寬度達到16位,頻率達到800MHz,效率更高。單個傳輸率可達到1.6GB/s,兩個的傳輸率可達到3.2GB/s。

點評:
30pin和72pin的內存,早已退出市場,現在市場上主流的內存,是SDRAM,而SDRAM的價格越降越底,對於商家和廠家而言,利潤空間已縮到了極限,賠錢的買賣,有誰願意去做了?再者也沒有必要,畢竟廠家或商家們總是在朝著向「錢」的方向發展。

隨著 INTEL和 AMD兩大公司 CPU生產飛速發展,以及各大板卡廠家的支持,RAMBUS 和 DDRAM 也得到了更快的發展和普及,究竟哪一款會成為主流,哪一款更適合用戶,市場終究會證明這一切的。

機存取存儲器是電腦的記憶部件,也被認為是反映集成電路工藝水平的部件。各種存儲器中以動態存儲器(DRAM)的存儲容量為最大,使用最為普及,幾十年間它的存儲量擴大了幾千倍,存取數據的速度提高40多倍。存儲器的集成度的提高是靠不斷縮小器件尺寸達到的。尺寸的縮小,對集成電路的設計和製造技術提出了極為苛刻的要求,可以說是只有一代新工藝的突破,才有一代集成電路。

動態讀寫存儲器DRAM(Dynamic Random Access MeMory)是利用MOS存儲單元分布電容上的電荷來存儲數據位,由於電容電荷會泄漏,為了保持信息不丟失,DRAM需要不斷周期性地對其刷新。由於這種結構的存儲單元所需要的MOS管較少,因此DRAM的集成度高、功耗也小,同時每位的價格最低。DRAM一般都用於大容量系統中。DRAM的發展方向有兩個,一是高集成度、大容量、低成本,二是高速度、專用化。

從1970年Intel公司推出第一塊1K DRAM晶元後,其存儲容量基本上是按每三年翻兩番的速度發展。1995年12月韓國三星公司率先宣布利用0.16μm工藝研製成功集成度達10億以上的1000M位的高速(3lns)同步DRAM。這個領域的競爭非常激烈,為了解決巨額投資和共擔市場風險問題,世界范圍內的各大半導體廠商紛紛聯合,已形成若干合作開發的集團格局。

1996年市場上主推的是4M位和16M位DRAM晶元,1997年以16M位為主,1998年64M位大量上市。64M DRAM的市場佔有率達52%;16M DRAM的市場佔有率為45%。1999年64M DRAM市場佔有率已提高到78%,16M DRAM佔1%。128M DRAM已經普及,明年將出現256M DRAM。

高性能RISC微處理器的時鍾已達到100MHz~700MHz,這種情況下,處理器對存儲器的帶寬要求越來越高。為了適應高速CPU構成高性能系統的需要,DRAM技術在不斷發展。在市場需求的驅動下,出現了一系列新型結構的高速DRAM。例如EDRAM、CDRAM、SDRAM、RDRAM、SLDRAM、DDR DRAM、DRDRAM等。為了提高動態讀寫存儲器訪問速度而採用不同技術實現的DRAM有:

(1) 快速頁面方式FPM DRAM

快速頁面方式FPM(Fast Page Mode)DRAM已經成為一種標准形式。一般DRAM存儲單元的讀寫是先選擇行地址,再選擇列地址,事實上,在大多數情況下,下一個所需要的數據在當前所讀取數據的下一個單元,即其地址是在同一行的下一列,FPM DRAM可以通過保持同一個行地址來選擇不同的列地址實現存儲器的連續訪問。減少了建立行地址的延時時間從而提高連續數據訪問的速度。但是當時鍾頻率高於33MHz時,由於沒有足夠的充電保持時間,將會使讀出的數據不可靠。

(2) 擴展數據輸出動態讀寫存儲器EDO DRAM

在FPM技術的基礎上發展起來的擴展數據輸出動態讀寫存儲器EDODRAM(Extended Data Out DRAM),是在RAM的輸出端加一組鎖存器構成二級內存輸出緩沖單元,用以存儲數據並一直保持到數據被可靠地讀取時為止,這樣就擴展了數據輸出的有效時間。EDODRAM可以在50MHz時鍾下穩定地工作。

由於只要在原DRAM的基礎上集成成本提高並不多的EDO邏輯電路,就可以比較有效地提高動態讀寫存儲器的性能,所以在此之前,EDO DRAM曾成為動態讀寫存儲器設計的主流技術和基本形式。

(3) 突發方式EDO DRAM

在EDO DRAM存儲器的基礎上,又發展了一種可以提供更高有效帶寬的動態讀寫存儲器突發方式EDO DRAM(Burst EDO DRAM)。這種存儲器可以對可能所需的4個數據地址進行預測並自動地預先形成,它把可以穩定工作的頻率提高到66MHz。

(4) 同步動態讀寫存儲器SDRAM

SDRAM(Synchronous DRAM)是通過同步時鍾對控制介面的操作和安排片內隔行突發方式地址發生器來提高存儲器的性能。它僅需要一個首地址就可以對一個存儲塊進行訪問。所有的輸入采樣如輸出有效都在同一個系統時鍾的上升沿。所使用的與CPU同步的時鍾頻率可以高達66MHz~100MHz。它比一般DRAM增加一個可編程方式寄存器。採用SDRAM可大大改善內存條的速度和性能,系統設計者可根據處理器要求,靈活地採用交錯或順序脈沖。

Infineon Technologies(原Siemens半導體)今年已批量供應256Mit SDRAM。其SDRAM用0.2μm技術生產,在100MHz的時鍾頻率下輸出時間為10ns。

(5) 帶有高速緩存的動態讀寫存儲器CDRAM

CDRAM(Cached DRAM)是日本三菱電氣公司開發的專有技術,1992年推出樣品,是通過在DRAM晶元,集成一定數量的高速SRAM作為高速緩沖存儲器Cache和同步控制介面,來提高存儲器的性能。這種晶元用單一+3.3V電源,低壓TTL輸入輸出電平。目前三菱公司可以提供的CDRAM為4Mb和16Mb,其片內Cache為16KB,與128位內部匯流排配合工作,可以實現100MHz的數據訪問。流水線式存取時間為7ns。

(6) 增強型動態讀寫存儲器EDRAM(Enhanced DRAM)

由Ramtron跨國公司推出的帶有高速緩沖存儲器的DRAM產品稱作增強型動態讀寫存儲器EDRAM(Enhanced DRAM),它採用非同步操作方式,單一+5V工作電源,CMOS或TTL輸入輸出電平。由於採用一種改進的DRAM 0.76μm CMOS工藝和可以減小寄生電容和提高晶體管增益的結構技術,其性能大大提高,行訪問時間為35ns,讀/寫訪問時間可以提高到65ns,頁面寫入周期時間為15ns。EDRAM還在片內DRAM存儲矩陣的列解碼器上集成了2K位15ns的靜態RAM高速緩沖存儲器Cache,和後寫寄存器以及另外的控制線,並允許SRAM Cache和DRAM獨立操作。每次可以對一行數據進行高速緩沖。它可以象標準的DRAM對任一個存儲單元用頁面或靜態列訪問模式進行操作,訪問時間只有15ns。當Cache未命中時,EDRAM就把新的一行載入到Cache中,並把選擇的存儲單元數據輸出,這需要花35ns。這種存儲器的突發數據率可以達到267Mbytes/s。

(7) RDRAM(Rambus DRAM)

Rambus DRAM是Rambus公司利用本身研製的一種獨特的介面技術代替頁面方式結構的一種新型動態讀寫存儲器。這種介面在處理機與DRAM之間使用了一種特殊的9位低壓負載發送線,用250MHz同步時鍾工作,位元組寬度地址與數據復用的串列匯流排介面。這種介面又稱作Rambus通道,這種通道嵌入到DRAM中就構成Rambus DRAM,它還可以嵌入到用戶定製的邏輯晶元或微處理機中。它通過使用250MHz時鍾的兩個邊沿可以使突發數據傳輸率達到500MHz。在採用Rambus通道的系統中每個晶元內部都有它自己的控制器,用來處理地址解碼和面頁高速緩存管理。由此一片存儲器子系統的容量可達512K位元組,並含有一個匯流排控制器。不同容量的存儲器有相同的引腳並連接在同一組匯流排上。Rambus公司開發了這種新型結構的DRAM,但是它本身並不生產,而是通過發放許可證的方式轉讓它的技術,已經得到生產許可的半導體公司有NEC、Fujitsu、Toshiba、Hitachi和LG等。

被業界看好的下一代新型DRAM有三種:雙數據傳輸率同步動態讀寫存儲器(DDR SDRAM)、同步鏈動態讀寫存儲器(SLDRAM)和Rambus介面DRAM(RDRAM)。

(1) DDR DRAM(Double Data Rate DRAM)

在同步動態讀寫存儲器SDRAM的基礎上,採用延時鎖定環(Delay-locked Loop)技術提供數據選通信號對數據進行精確定位,在時鍾脈沖的上升沿和下降沿都可傳輸數據(而不是第一代SDRAM僅在時鍾脈沖的下降沿傳輸數據),這樣就在不提高時鍾頻率的情況下,使數據傳輸率提高一倍,故稱作雙數據傳輸率(DDR)DRAM,它實際上是第二代SDRAM。由於DDR DRAM需要新的高速時鍾同步電路和符合JEDEC標準的存儲器模塊,所以主板和晶元組的成本較高,一般只能用於高檔伺服器和工作站上,其價格在中低檔PC機上可能難以接受。

(2) SLDRAM(Synchnonous Link DRAM)

這是由IBM、HP、Apple、NEC、Fujitsu、Hyundai、Micron、TI、Toshiba、Sansung和Siemens等業界大公司聯合制定的一個開放性標准,委託Mosaid Technologies公司設計,所以SLDRAM是一種原本最有希望成為高速DRAM開放性工業標準的動態讀寫存儲器。它是一種在原DDR DRAM基礎上發展的一種高速動態讀寫存儲器。它具有與DRDRAM相同的高數據傳輸率,但是它比其工作頻率要低;另外生產這種存儲器不需要支付專利使用費,使得製造成本較低,所以這種存儲器應該具有市場競爭優勢。但是由於SLDRAM聯盟是一個鬆散的聯合體,眾多成員之間難以協調一致,在研究經費投入上不能達成一致意見,加上Intel公司不支持這種標准,所以這種動態存儲器反而難以形成氣候,敵不過Intel公司鼎立支持的Rambus公司的DRDRAM。SLDRAM可用於通信和消費類電子產品,高檔PC和伺服器。

(3) DRDRAM(Direct Rambus DRAM)

從1996年開始,Rambus公司就在Intel公司的支持下制定新一代RDRAM標准,這就是DRDRAM(Direct RDRAM)。這是一種基於協議的DRAM,與傳統DRAM不同的是其引腳定義會隨命令而變,同一組引腳線可以被定義成地址,也可以被定義成控制線。其引腳數僅為正常DRAM的三分之一。當需要擴展晶元容量時,只需要改變命令,不需要增加硬體引腳。這種晶元可以支持400MHz外頻,再利用上升沿和下降沿兩次傳輸數據,可以使數據傳輸率達到800MHz。同時通過把數據輸出通道從8位擴展成16位,這樣在100MHz時就可以使最大數據輸出率達1.6Gb/s。東芝公司在購買了Rambus公司的高速傳輸介面技術專利後,於1998年9月首先推出72Mb的RDRAM,其中64Mb是數據存儲器,另外8Mb用於糾錯校驗,由此大大提高了數據讀寫可靠性。

Intel公司辦排眾議,堅定地推舉DRDRAM作為下一代高速內存的標准,目前在Intel公司對Micro、Toshiba和Samsung等公司組建DRDRAM的生產線和測試線投入資金。其他眾多廠商也在努力與其抗爭,最近AMD宣布至少今年推出的K7微處理器都不打算採用Rambus DRAM;據說IBM正在考慮放棄對Rambus的支持。當前市場上同樣是64Mb的DRAM,RDRAM就要比其他標準的貴45美元。
由此可見存儲器的發展動向是:大容量化,高速化, 多品種、多功能化,低電壓、低功耗化。
存儲器的工藝發展中有以下趨勢:CHMOS工藝代替NMOS工藝以降低功耗;縮小器件尺寸,外圍電路仍採用ECL結構以提高存取速度同時提高集成度;存儲電容從平面HI-C改為深溝式,保證尺寸減少後的電荷存儲量,以提高可靠性;電路設計中簡化外圍電路結構,注意降低雜訊,運用冗餘技術以提高質量和成品率;工藝中採用了多種新技術;使DRAM的存儲容量穩步上升,為今後繼續開發大容量的新電路奠定基礎。
從電子計算機中的處理器和存儲器可以看出ULSI前進的步伐和幾十年間的巨大變化。

3. 計算機儲存介質的發展史

個人電腦中的硬碟類存儲設備發展史
原始的IBMPC,出現於1981年,當時它還不支持任何形式的固定式存儲器(也就是今天我們說的『硬碟』),因此在它的BIOS里沒有任何關於識別與控制此類設備的代碼。早期的DOS操作系統在目錄總數上的限制也影響到了大容量存儲設備的使用。考慮到最初的CPU僅為4.77MHz的主頻和少得可憐的內存容量(16KB,可擴展到64KB),對那時的PC來說就連軟碟機都顯得有些「奢侈」了。當時,軟碟機和裝在軟盤中的操作系統都還屬於系統中的可選部分,大多數用戶靠的還是磁帶機和記錄在ROM里的Basic程序來操作電腦。在一台PC機里使用固定式硬碟需要滿足以下幾個條件:提供一個獨立的IRQ(中斷請求號)為控制器預留一段I/O介面地址。提供一條DMA通道(這在今天已不再是必須的了)。得到BIOS中低級程序代碼的支持。在匯流排上開出一個物理介面(通過擴展卡或主板板載來實現)。保證操作系統的支持。保障相應的供電和冷卻條件。從DOS2開始,DOS得以在大容量存儲設備中使用「子目錄」這一概念,受此影響,終於開始有廠家推出面向PC機的硬碟設備了。當時它還是一種外置的,使用專用介面卡的特殊設備,電源也是由外部獨立供給的(因為當時PC內置的63.5W電源光對機箱內部原有的設備供電都已經顯得有些功率不足了)。使用它時,需要在PC里找出一個空餘的8bit擴展槽,插上專用介面卡,並調整系統設置為該卡留出專用的IRQ和一定范圍的I/O地址,然後在每次啟動時,都要用軟盤來引導系統時,以便向內存中載入帶有讀寫控制代碼的驅動程序,整個過程煩瑣而復雜。但到了1983年的IBMPCXT(eXTended)問世時,有些機型就已經開始內置10MB的固定式硬碟了。IBM開始在機箱內預設硬碟控制介面,讀寫硬碟所需的程序代碼也正式被作為主板上BIOS的擴展部分而保存到了介面卡的ROM上,不用在啟動時一次次地向內存里載入了。並且,機箱內置的電源功率提高到了135W,這一性能已完全能滿足機箱內置硬碟的供電要求了。XT規格中關於硬碟介面的部分規定如下:使用IRQ5。使用I/O地址320-32F。使用DMA3。相應程序代碼記錄於ROM地址C8000處。使用DOS2.0版本以上的操作系統。受此影響,更多的公司開始生產、銷售類似的驅動器/介面卡套件。這些第三方生產的套件都帶有各自不同的特色,有的提供了更大的容量、有的實現了更高的讀寫速度、還有的在介面控制卡上集成了軟碟機介面以節約主板上有限的擴展槽。進入1984年後,IBMPC/AT(AdvancedTechnology,先進技術)規格中關於硬碟子系統的部分得到了全面更新。程序控制代碼開始被內建於主板搭載的BIOS中,從而不再依靠介面控制卡上所帶的ROM晶元了。系統開始支持新增加的高位IRQ中斷號,廢除了對DMA通道的佔用,並更改了硬碟介面所使用的I/O地址。AT規格中關於硬碟介面規定如下:使用IRQ14。使用I/O介面地址1F0-1F8。不再佔用DMA通道。使用主板BIOS中內建的程序代碼對硬碟介面進行控制。使用DOS2.0版本以上的操作系統。AT兼容機上的硬體設置信息都被保存在一塊CMOS晶元上,所記錄的內容受一塊小型電池的供電來維持。因此即便機箱的電源被切斷,所有設置仍舊會被保存下來。這一技術使PC機的用戶不必再受一大堆跳線和撥動開關的困擾(在早期的電腦上,每件設備所佔用的系統資源都是由用戶手動更改跳線或撥動開關來進行分配的),且CMOS中所記錄的內容可以運行一個簡單的程序方便地進行更改,此舉可算是提高電腦易用性方面的一大進步。原始的AT規格界定了從10MB到112MB共計14種容量的硬碟,在使用那些不合規格的硬碟時,仍需要在介面卡上搭載ROM晶元或是在系統啟動時載入專用的設備驅動程序。在DOS4.0之前的操作系統不支持32MB以上的分區,哪怕是使用容量在100MB以上的硬碟時,也要把它切割成小區方能使用,這是因為「系統中的扇區總數不能超過16位(65,536)」這一傳統限制。想使用大於32MB的分區,就必須使用特殊的分區工具,例如Ontrack』sDiskManager(即便是在今天,新版本DiskManager仍舊受到用戶們的歡迎,它可是解決老主板不支持大容量硬碟的制勝法寶啊),當時有許多硬碟廠家都將DiskManager與自家的產品捆綁銷售。但不幸的是,DiskManager與其他許多磁碟工具都發生了兼容性問題,因為在大多數工具軟體下,用DiskManager所分的區都會被識別成了非DOS(Non-DOS)分區。因此,許多用戶被迫選擇了分割多個32MB以下小分區的辦法來使用大容量硬碟,但這種辦法也有局限性,因為DOS3.3之前的版本根本就不支持擴展分區這一概念……今天的用戶當然不必理會這些限制,因為AT兼容機所支持的硬碟種類已增加為40多種,並且大多數BIOS都會提供一個可由用戶自由設定各種硬碟參數的選項。您只要打開WINDOWS操作系統中的硬碟屬性,就能看到「GENERICIDEDISKTYPE46/47」等字樣(具體顯示46還是47與系統設置有關,在BIOS里把硬碟類型設為USER時顯示為TYPE46,而設為AUTO時系統屬性里則顯示TYPE47),這就是您的硬碟所屬的「固有的硬碟類型」。當然,在WINDOWS環境下,用戶根本用不著在意硬碟到底被設成了什麼類型,因為隨著操作系統本身的發展進步,WINDOWS本身不需要讀取這一參數就能正確地讀寫硬碟了。不過,原始的AT規格中的部分條文在今天依舊是PC機的桎梏,例如一台PC機最多隻能連接2個硬碟、BIOS/操作系統只能識別1024柱面、16磁頭和63扇區/磁軌的限制等等(當然,這些限制現在都已被克服了)。人們已經採用了多種不同的辦法來將那些「不合規格的」物理參數與系統所能支持的邏輯參數之間進行互相轉換。

4. 存儲器的發展史

存儲器設備發展

1.存儲器設備發展之汞延遲線

汞延遲線是基於汞在室溫時是液體,同時又是導體,每比特數據用機械波的波峰(1)和波谷(0)表示。機械波從汞柱的一端開始,一定厚度的熔融態金屬汞通過一振動膜片沿著縱向從一端傳到另一端,這樣就得名「汞延遲線」。在管的另一端,一感測器得到每一比特的信息,並反饋到起點。設想是汞獲取並延遲這些數據,這樣它們便能存儲了。這個過程是機械和電子的奇妙結合。缺點是由於環境條件的限制,這種存儲器方式會受各種環境因素影響而不精確。

1950年,世界上第一台具有存儲程序功能的計算機EDVAC由馮.諾依曼博士領導設計。它的主要特點是採用二進制,使用汞延遲線作存儲器,指令和程序可存入計算機中。

1951年3月,由ENIAC的主要設計者莫克利和埃克特設計的第一台通用自動計算機UNIVAC-I交付使用。它不僅能作科學計算,而且能作數據處理。

2.存儲器設備發展之磁帶

UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。

磁帶是所有存儲器設備發展中單位存儲信息成本最低、容量最大、標准化程度最高的常用存儲介質之一。它互換性好、易於保存,近年來,由於採用了具有高糾錯能力的編碼技術和即寫即讀的通道技術,大大提高了磁帶存儲的可靠性和讀寫速度。根據讀寫磁帶的工作原理可分為螺旋掃描技術、線性記錄(數據流)技術、DLT技術以及比較先進的LTO技術。

根據讀寫磁帶的工作原理,磁帶機可以分為六種規格。其中兩種採用螺旋掃描讀寫方式的是面向工作組級的DAT(4mm)磁帶機和面向部門級的8mm磁帶機,另外四種則是選用數據流存儲技術設計的設備,它們分別是採用單磁頭讀寫方式、磁帶寬度為1/4英寸、面向低端應用的Travan和DC系列,以及採用多磁頭讀寫方式、磁帶寬度均為1/2英寸、面向高端應用的DLT和IBM的3480/3490/3590系列等。

磁帶庫是基於磁帶的備份系統,它能夠提供同樣的基本自動備份和數據恢復功能,但同時具有更先進的技術特點。它的存儲容量可達到數百PB,可以實現連續備份、自動搜索磁帶,也可以在驅動管理軟體控制下實現智能恢復、實時監控和統計,整個數據存儲備份過程完全擺脫了人工干涉。

磁帶庫不僅數據存儲量大得多,而且在備份效率和人工佔用方面擁有無可比擬的優勢。在網路系統中,磁帶庫通過SAN(Storage Area Network,存儲區域網路)系統可形成網路存儲系統,為企業存儲提供有力保障,很容易完成遠程數據訪問、數據存儲備份或通過磁帶鏡像技術實現多磁帶庫備份,無疑是數據倉庫、ERP等大型網路應用的良好存儲設備。

3.存儲器設備發展之磁鼓

1953年,隨著存儲器設備發展,第一台磁鼓應用於IBM 701,它是作為內存儲器使用的。磁鼓是利用鋁鼓筒表面塗覆的磁性材料來存儲數據的。鼓筒旋轉速度很高,因此存取速度快。它採用飽和磁記錄,從固定式磁頭發展到浮動式磁頭,從採用磁膠發展到採用電鍍的連續磁介質。這些都為後來的磁碟存儲器打下了基礎。

磁鼓最大的缺點是利用率不高, 一個大圓柱體只有表面一層用於存儲,而磁碟的兩面都利用來存儲,顯然利用率要高得多。 因此,當磁碟出現後,磁鼓就被淘汰了。

4.存儲器設備發展之磁芯

美國物理學家王安1950年提出了利用磁性材料製造存儲器的思想。福雷斯特則將這一思想變成了現實。

為了實現磁芯存儲,福雷斯特需要一種物質,這種物質應該有一個非常明確的磁化閾值。他找到在新澤西生產電視機用鐵氧體變換器的一家公司的德國老陶瓷專家,利用熔化鐵礦和氧化物獲取了特定的磁性質。

對磁化有明確閾值是設計的關鍵。這種電線的網格和芯子織在電線網上,被人稱為芯子存儲,它的有關專利對發展計算機非常關鍵。這個方案可靠並且穩定。磁化相對來說是永久的,所以在系統的電源關閉後,存儲的數據仍然保留著。既然磁場能以電子的速度來閱讀,這使互動式計算有了可能。更進一步,因為是電線網格,存儲陣列的任何部分都能訪問,也就是說,不同的數據可以存儲在電線網的不同位置,並且閱讀所在位置的一束比特就能立即存取。這稱為隨機存取存儲器(RAM),在存儲器設備發展歷程中它是互動式計算的革新概念。福雷斯特把這些專利轉讓給麻省理工學院,學院每年靠這些專利收到1500萬~2000萬美元。

最先獲得這些專利許可證的是IBM,IBM最終獲得了在北美防衛軍事基地安裝「旋風」的商業合同。更重要的是,自20世紀50年代以來,所有大型和中型計算機也採用了這一系統。磁芯存儲從20世紀50年代、60年代,直至70年代初,一直是計算機主存的標准方式。

5.存儲器設備發展之磁碟

世界第一台硬碟存儲器是由IBM公司在1956年發明的,其型號為IBM 350 RAMAC(Random Access Method of Accounting and Control)。這套系統的總容量只有5MB,共使用了50個直徑為24英寸的磁碟。1968年,IBM公司提出「溫徹斯特/Winchester」技術,其要點是將高速旋轉的磁碟、磁頭及其尋道機構等全部密封在一個無塵的封閉體中,形成一個頭盤組合件(HDA),與外界環境隔絕,避免了灰塵的污染,並採用小型化輕浮力的磁頭浮動塊,碟片表面塗潤滑劑,實行接觸起停,這是現代絕大多數硬碟的原型。1979年,IBM發明了薄膜磁頭,進一步減輕了磁頭重量,使更快的存取速度、更高的存儲密度成為可能。20世紀80年代末期,IBM公司又對存儲器設備發展作出一項重大貢獻,發明了MR(Magneto Resistive)磁阻磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度比以往提高了數十倍。1991年,IBM生產的3.5英寸硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此,硬碟容量開始進入了GB數量級。IBM還發明了PRML(Partial Response Maximum Likelihood)的信號讀取技術,使信號檢測的靈敏度大幅度提高,從而可以大幅度提高記錄密度。

目前,硬碟的面密度已經達到每平方英寸100Gb以上,是容量、性價比最大的一種存儲設備。因而,在計算機的外存儲設備中,還沒有一種其他的存儲設備能夠在最近幾年中對其統治地位產生挑戰。硬碟不僅用於各種計算機和伺服器中,在磁碟陣列和各種網路存儲系統中,它也是基本的存儲單元。值得注意的是,近年來微硬碟的出現和快速發展為移動存儲提供了一種較為理想的存儲介質。在快閃記憶體晶元難以承擔的大容量移動存儲領域,微硬碟可大顯身手。目前尺寸為1英寸的硬碟,存儲容量已達4GB,10GB容量的1英寸硬碟不久也會面世。微硬碟廣泛應用於數碼相機、MP3設備和各種手持電子類設備。

另一種磁碟存儲設備是軟盤,從早期的8英寸軟盤、5.25英寸軟盤到3.5英寸軟盤,主要為數據交換和小容量備份之用。其中,3.5英寸1.44MB軟盤占據計算機的標准配置地位近20年之久,之後出現過24MB、100MB、200MB的高密度過渡性軟盤和軟碟機產品。然而,由於USB介面的快閃記憶體出現,軟盤作為數據交換和小容量備份的統治地位已經動搖,不久會退出存儲器設備發展歷史舞台。

6. 存儲器設備發展之光碟

光碟主要分為只讀型光碟和讀寫型光碟。只讀型指光碟上的內容是固定的,不能寫入、修改,只能讀取其中的內容。讀寫型則允許人們對光碟內容進行修改,可以抹去原來的內容,寫入新的內容。用於微型計算機的光碟主要有CD-ROM、CD-R/W和DVD-ROM等幾種。

上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。

從LD的誕生至計算機用的CD-ROM,經歷了三個階段,即LD-激光視盤、CD-DA激光唱盤、CD-ROM。下面簡單介紹這三個存儲器設備發展階段性的產品特點。

LD-激光視盤,就是通常所說的LCD,直徑較大,為12英寸,兩面都可以記錄信息,但是它記錄的信號是模擬信號。模擬信號的處理機制是指,模擬的電視圖像信號和模擬的聲音信號都要經過FM(Frequency Molation)頻率調制、線性疊加,然後進行限幅放大。限幅後的信號以0.5微米寬的凹坑長短來表示。

CD-DA激光唱盤 LD雖然取得了成功,但由於事先沒有制定統一的標准,使它的開發和製作一開始就陷入昂貴的資金投入中。1982年,由飛利浦公司和索尼公司制定了CD-DA激光唱盤的紅皮書(Red Book)標准。由此,一種新型的激光唱盤誕生了。CD-DA激光唱盤記錄音響的方法與LD系統不同,CD-DA激光唱盤系統首先把模擬的音響信號進行PCM(脈沖編碼調制)數字化處理,再經過EMF(8~14位調制)編碼之後記錄到盤上。數字記錄代替模擬記錄的好處是,對干擾和雜訊不敏感,由於盤本身的缺陷、劃傷或沾污而引起的錯誤可以校正。

CD-DA系統取得成功以後,使飛利浦公司和索尼公司很自然地想到利用CD-DA作為計算機的大容量只讀存儲器。但要把CD-DA作為計算機的存儲器,還必須解決兩個重要問題,即建立適合於計算機讀寫的盤的數據結構,以及CD-DA誤碼率必須從現有的10-9降低到10-12以下,由此就產生了CD-ROM的黃皮書(Yellow Book)標准。這個標準的核心思想是,盤上的數據以數據塊的形式來組織,每塊都要有地址,這樣一來,盤上的數據就能從幾百兆位元組的存儲空間上被迅速找到。為了降低誤碼率,採用增加一種錯誤檢測和錯誤校正的方案。錯誤檢測採用了循環冗餘檢測碼,即所謂CRC,錯誤校正採用里德-索洛蒙(Reed Solomon)碼。黃皮書確立了CD-ROM的物理結構,而為了使其能在計算機上完全兼容,後來又制定了CD-ROM的文件系統標准,即ISO 9660。

在上世紀80年代中期,光碟存儲器設備發展速度非常快,先後推出了WORM光碟、磁光碟(MO)、相變光碟(Phase Change Disk,PCD)等新品種。20世紀90年代,DVD-ROM、CD-R、CD-R/W等開始出現和普及,目前已成為計算機的標准存儲設備。

光碟技術進一步向高密度發展,藍光光碟是不久將推出的下一代高密度光碟。多層多階光碟和全息存儲光碟正在實驗室研究之中,可望在5年之內推向市場。

7.存儲器設備發展之納米存儲

納米是一種長度單位,符號為nm。1納米=1毫微米,約為10個原子的長度。假設一根頭發的直徑為0.05毫米,把它徑向平均剖成5萬根,每根的厚度即約為1納米。與納米存儲有關的主要進展有如下內容。

1998年,美國明尼蘇達大學和普林斯頓大學制備成功量子磁碟,這種磁碟是由磁性納米棒組成的納米陣列體系。一個量子磁碟相當於我們現在的10萬~100萬個磁碟,而能源消耗卻降低了1萬倍。

1988年,法國人首先發現了巨磁電阻效應,到1997年,採用巨磁電阻原理的納米結構器件已在美國問世,它在磁存儲、磁記憶和計算機讀寫磁頭等方面均有廣闊的應用前景。

2002年9月,美國威斯康星州大學的科研小組宣布,他們在室溫條件下通過操縱單個原子,研製出原子級的硅記憶材料,其存儲信息的密度是目前光碟的100萬倍。這是納米存儲材料技術研究的一大進展。該小組發表在《納米技術》雜志上的研究報告稱,新的記憶材料構建在硅材料表面上。研究人員首先使金元素在硅材料表面升華,形成精確的原子軌道;然後再使硅元素升華,使其按上述原子軌道進行排列;最後,藉助於掃瞄隧道顯微鏡的探針,從這些排列整齊的硅原子中間隔抽出硅原子,被抽空的部分代表「0」,餘下的硅原子則代表「1」,這就形成了相當於計算機晶體管功能的原子級記憶材料。整個試驗研究在室溫條件下進行。研究小組負責人赫姆薩爾教授說,在室溫條件下,一次操縱一批原子進行排列並不容易。更為重要的是,記憶材料中硅原子排列線內的間隔是一個原子大小。這保證了記憶材料的原子級水平。赫姆薩爾教授說,新的硅記憶材料與目前硅存儲材料存儲功能相同,而不同之處在於,前者為原子級體積,利用其製造的計算機存儲材料體積更小、密度更大。這可使未來計算機微型化,且存儲信息的功能更為強大。

以上就是本文向大家介紹的存儲器設備發展歷程的7個關鍵時期

5. 誰知道內存的發展史

內存發展史

在了解內存的發展之前,我們應該先解釋一下幾個常用詞彙,這將有助於我們加強對內存的理解。
RAM就是RandomAccessMemory(隨機存貯器)的縮寫。它又分成兩種StaticRAM(靜態隨機存貯器)和DynamicRAM(動態隨機存貯器)。
SRAM曾經是一種主要的內存,SRAM速度很快而且不用刷新就能保存數據不丟失。它以雙穩態電路形式存儲數據,結構復雜,內部需要使用更多的晶體管構成寄存器以保存數據,所以它採用的矽片面積相當大,製造成本也相當高,所以現在只能把SRAM用在比主內存小的多的高速緩存上。隨著Intel將L2高速緩存整合入CPU(從Medocino開始)後,SRAM失去了最大應用需求來源,還好在行動電話從模擬轉向數字的發展趨勢中,終於為具有省電優勢的SRAM尋得了另一個需求成長的契機,再加上網路伺服器、路由器等的需求激勵,才使得SRAM市場勉強得以繼續成長。

DRAM,顧名思義即動態RAM。DRAM的結構比起SRAM來說要簡單的多,基本結構是一隻MOS管和一個電容構成。具有結構簡單、集成度高、功耗低、生產成本低等優點,適合製造大容量存儲器,所以現在我們用的內存大多是由DRAM構成的。所以下面主要介紹DRAM內存。在詳細說明DRAM存儲器前首先要說一下同步的概念,根據內存的訪問方式可分為兩種:同步內存和非同步內存。區分的標準是看它們能不能和系統時鍾同步。內存控制電路(在主板的晶元組中,一般在北橋晶元組中)發出行地址選擇信號(RAS)和列地址選擇信號(CAS)來指定哪一塊存儲體將被訪問。在SDRAM之前的EDO內存就採用這種方式。讀取數據所用的時間用納秒錶示。當系統的速度逐漸增加,特別是當66MHz頻率成為匯流排標准時,EDO內存的速度就顯得很慢了,CPU總要等待內存的數據,嚴重影響了性能,內存成了一個很大的瓶頸。因此出現了同步系統時鍾頻率的SDRAM。DRAM的分類FPDRAM:又叫快頁內存,在386時代很流行。因為DRAM需要恆電流以保存信息,一旦斷電,信息即丟失。它的刷新頻率每秒鍾可達幾百次,但由於FPDRAM使用同一電路來存取數據,所以DRAM的存取時間有一定的時間間隔,這導致了它的存取速度並不是很快。另外,在DRAM中,由於存儲地址空間是按頁排列的,所以當訪問某一頁面時,切換到另一頁面會佔用CPU額外的時鍾周期。其介面多為72線的SIMM類型。EDODRAM:EDORAM――ExtendedDateOutRAM——外擴充數據模式存儲器,EDO-RAM同FPDRAM相似,它取消了擴展數據輸出內存與傳輸內存兩個存儲周期之間的時間間隔,在把數據發送給CPU的同時去訪問下一個頁面,故而速度要比普通DRAM快15~30%。工作電壓為一般為5V,其介面方式多為72線的SIMM類型,但也有168線的DIMM類型。EDODRAM這種內存流行在486以及早期的奔騰電腦上。當前的標準是SDRAM(同步DRAM的縮寫),顧名思義,它是同步於系統時鍾頻率的。SDRAM內存訪問採用突發(burst)模式,它和原理是,SDRAM在現有的標准動態存儲器中加入同步控制邏輯(一個狀態機),利用一個單一的系統時鍾同步所有的地址數據和控制信號。使用SDRAM不但能提高系統表現,還能簡化設計、提供高速的數據傳輸。在功能上,它類似常規的DRAM,也需時鍾進行刷新。可以說,SDRAM是一種改善了結構的增強型DRAM。然而,SDRAM是如何利用它的同步特性而適應高速系統的需要的呢?我們知道,原先我們使用的動態存儲器技術都是建立在非同步控制基礎上的。系統在使用這些非同步動態存儲器時需插入一些等待狀態來適應非同步動態存儲器的本身需要,這時,指令的執行時間往往是由內存的速度、而非系統本身能夠達到的最高速率來決定。例如,當將連續數據存入CACHE時,一個速度為60ns的快頁內存需要40ns的頁循環時間;當系統速度運行在100MHz時(一個時鍾周期10ns),每執行一次數據存取,即需要等待4個時鍾周期!而使用SDRAM,由於其同步特性,則可避免這一時。SDRAM結構的另一大特點是其支持DRAM的兩列地址同時打開。兩個打開的存儲體間的內存存取可以交叉進行,一般的如預置或激活列可以隱藏在存儲體存取過程中,即允許在一個存儲體讀或寫的同時,令一存儲體進行預置。按此進行,100MHz的無縫數據速率可在整個器件讀或寫中實現。因為SDRAM的速度約束著系統的時鍾速度,它的速度是由MHz或ns來計算的。SDRAM的速度至少不能慢於系統的時鍾速度,SDRAM的訪問通常發生在四個連續的突發周期,第一個突發周期需要4個系統時鍾周期,第二到第四個突發周期只需要1個系統時鍾周期。用數字表示如下:4-1-1-1。順便提一下BEDO(BurstEDO)也就是突發EDO內存。實際上其原理和性能是和SDRAM差不多的,因為Intel的晶元組支持SDRAM,由於INTEL的市場領導地位幫助SDRAM成為市場的標准。

DRAMR的兩種介面類型DRAM主要有兩種介面類型,既早期的SIMM和現在的標准DIMM。SIMM是Single-InLineMemoryMole的簡寫,即單邊接觸內存模組,這是486及其較早的PC機中常用的內存的介面方式。在更早的PC機中(486以前),多採用30針的SIMM介面,而在Pentium中,應用更多的則是72針的SIMM介面,或者是與DIMM介面類型並存。DIMM是DualIn-LineMemoryMole的簡寫,即雙邊接觸內存模組,也就是說這種類型介面內存的插板的兩邊都有數據介面觸片,這種介面模式的內存廣泛應用於現在的計算機中,通常為84針,但由於是雙邊的,所以一共有84×2=168線接觸,故而人們經常把這種內存稱為168線內存,而把72線的SIMM類型內存模組直接稱為72線內存。DRAM內存通常為72線,EDO-RAM內存既有72線的,也有168線的,而SDRAM內存通常為168線的。新的內存標准在新的世紀到來之時,也帶來了計算機硬體的重大改變。計算機的製造工藝發展到已經可以把微處理器(CPU)的時鍾頻率提高的一千兆的邊緣。相應的內存也必須跟得上處理器的速度才行。現在有兩個新的標准,DDRSDRAM內存和Rambus內存。它們之間的競爭將會成為PC內存市場競爭的核心。DDRSDRAM代表著一條內存逐漸演化的道路。Rambus則代表著計算機設計上的重大變革。從更遠一點的角度看。DDRSDRAM是一個開放的標准。然而Rambus則是一種專利。它們之間的勝利者將會對計算機製造業產生重大而深遠的影響。

RDRAM在工作頻率上有大幅度的提升,但這一結構的改變,涉及到包括晶元組、DRAM製造、封裝、測試甚至PCB及模組等的全面改變,可謂牽一發而動全身。未來高速DRAM結構的發展究竟如何?

Intel重新整裝再發的820晶元組,是否真能如願以償地讓RDRAM登上主流寶座?PC133SDRAM:PC133SDRAM基本上只是PC100SDRAM的延伸,不論在DRAM製造、封裝、模組、連接器方面,都延續舊有規范,它們的生產設備相同,因此生產成本也幾乎與PC100SDRAM相同。嚴格來說,兩者的差別僅在於相同製程技術下,所多的一道「篩選」程序,將速度可達133MHz的顆粒挑選出來而已。若配合可支持133MHz外頻的晶元組,並提高CPU的前端匯流排頻率(FrontSideBus)到133MHz,便能將DRAM帶寬提高到1GB/sec以上,從而提高整體系統性能。DDR-SDRAM:DDRSDRAM(DoubleDataRateDRAM)或稱之為SDRAMⅡ,由於DDR在時鍾的上升及下降的邊緣都可以傳輸資料,從而使得實際帶寬增加兩倍,大幅提升了其性能/成本比。就實際功能比較來看,由PC133所衍生出的第二代PC266DDRSRAM(133MHz時鍾×2倍數據傳輸=266MHz帶寬),不僅在InQuest最新測試報告中顯示其性能平均高出Rambus24.4%,在Micron的測試中,其性能亦優於其他的高頻寬解決方案,充份顯示出DDR在性能上已足以和Rambus相抗衡的程度。DirectRambus-DRAM:RambusDRAM設計與以往DRAM很大的不同之處在於,它的微控制器與一般內存控制器不同,使得晶元組必須重新設計以符合要求,此外,數據通道介面也與一般內存不同,Rambus以2條各8bit寬(含ECC則為9bit)的數據通道(channel)傳輸數據,雖然比SDRAM的64bit窄,但其時鍾頻率卻可高達400MHz,且在時鍾的上升和下降沿都能傳輸數據,因而能達到1.6GB/sec的尖峰帶寬。

各種DRAM規格之綜合比較數據帶寬:從數據帶寬來看,傳統PC100在時鍾頻率為100MHz的情況下,尖峰數據傳輸率可達到800MB/sec。若以先進0.25微米線程製造的DRAM,大都可以「篩選」出時鍾頻率達到133MHz的PC133顆粒,可將尖峰數據傳輸率再次提高至1.06GB/sec,只要CPU及晶元組能配合,就可提高整體系統性能。此外,就DDR而言,由於其在時鍾上升和下降沿都能傳輸數據,所以在相同133MHz的時鍾頻率下,其尖峰數據傳輸將可大幅提高兩倍,達到2.1GB/sec的水準,其性能甚至比現階段Rambus所能達到的1.6GB/sec更高。
傳輸模式:傳統SDRAM採用並列數據傳輸方式,Rambus則採取了比較特別的串列傳輸方式。在串列的傳輸方式之下,資料信號都是一進一出,可以把數據帶寬降為16bit,而且可大幅提高工作時鍾頻率(400MHz),但這也形成了模組在數據傳輸設計上的限制。也就是說,在串接的模式下,如果有其中一個模組損壞、或是形成斷路,便會使整個系統無法正常開機。因此,對採用Rambus內存模組的主機板而言,便必須將三組內存擴充插槽完全插滿,如果Rambus模組不足的話,只有安裝不含RDRAM顆粒的中繼模組(ContinuityRIMMMole;C-RIMM),純粹用來提供信號的串接工作,讓數據的傳輸暢通。模組及PCB的設計:由於Rambus的工作頻率高達400MHz,所以不管是電路設計、線路布局、顆粒封裝及記憶模組的設計等,都和以往SDRAM大為不同。以模組設計而言,RDRAM所構成的記憶模組稱之為RIMM(RambusInMemoryMole),目前的設計可採取4、6、8、12與16顆等不同數目的RDRAM顆粒來組成,雖然引腳數提高到了184隻,但整個模組的長度卻與原有DIMM相當。另外,在設計上,Rambus的每一個傳輸信道所能承載的晶元顆粒數目有限(最多32顆),從而造成RDRAM內存模組容量將有所限制。也就是說,如果已經安裝了一隻含16顆RDARM顆粒的RIMM模組時,若想要再擴充內存,最多隻能再安裝具有16顆RDARM的模組。另外,由於RDARM在高頻下工作將產生高溫,所以RIMM模組在設計時必須加上一層散熱片,也增加了RIMM模組的成本。
顆粒的封裝:DRAM封裝技術從最早的DIP、SOJ提高到TSOP的形式。從現在主流SDRAM的模組來看,除了勝創科技首創的TinyBGA技術和樵風科技首創的BLP封裝模式外,絕大多數還是採用TSOP的封裝技術。
隨著DDR、RDRAM的陸續推出,將內存頻率提高到一個更高的水平上,TSOP封裝技術漸漸有些力不從心了,難以滿足DRAM設計上的要求。從Intel力推的RDRAM來看,採用了新一代的μBGA封裝形式,相信未來DDR等其他高速DRAM的封裝也會採取相同或不同的BGA封裝方式。盡管RDRAM在時鍾頻率上有了突破性的進展,有效地提高了整個系統性能,但畢竟在實際使用上,其規格與現階段主流的SDRAM有很大的差異,不僅不兼容於現有系統晶元組而成了Intel一家獨攬的局面。甚至在DRAM模組的設計上,不僅使用了最新一代的BGA封裝方式,甚至在電路板的設計上,都採取用了8層板的嚴格標准,更不用說在測試設備上的龐大投資。使得大多數的DRAM及模組廠商不敢貿然跟進。
再說,由於Rambus是個專利標准,想生產RDRAM的廠商必須先取得Rambus公司的認證,並支付高額的專利費用。不僅加重了各DRAM廠商的成本負擔,而且它們擔心在制定未來新一代的內存標准時會失去原來掌握的規格控制能力。
由於RIMM模組的顆粒最多隻能為32顆,限制了Rambus應用,只能用在入門級伺服器和高級PC上。或許就PC133而言,在性能上無法和Rambus抗衡,但是一旦整合了DDR技術後,其數據帶寬可達到2.1GB/sec,不僅領先Rambus所能達到的1.6GB/sec標准,而且由於其開放的標准及在兼容性上遠比Rambus高的原故,估計將會對Rambus造成非常大的殺傷力。更何況台灣在威盛與AMD等聯盟的強力支持下,Intel是否能再象往日一般地呼風喚雨,也成了未知數。至少,在低價PC及網路PC方面,Rambus的市場將會很小。

結論:盡管Intel採取了種種不同的策略布局及對策,要想挽回Rambus的氣勢,但畢竟像Rambus這種具有突破性規格的產品,在先天上便存在有著諸多較難克服的問題。或許Intel可以藉由更改主機板的RIMM插槽方式、或是提出SDRAM與RDRAM共同存在的過渡性方案(S-RIMM、RIMMRiser)等方式來解決技術面上的問題。但一旦涉及規模量產成本的控制問題時,便不是Intel所能一家獨攬的,更何況在網路趨勢下的計算機應用將愈來愈趨於低價化,市場需求面是否對Rambus有興趣,則仍有待考驗。 在供給方面,從NEC獨創的VCMSDRAM規格(VirtualChannelMemory)、以及Samsung等DRAM大廠對Rambus支持態度已趨保守的情況來看,再加上相關封裝及測試等設備上的投資不足,估計年底之前,Rambus內存模組仍將缺乏與PC133甚至DDR的價格競爭力。就長遠的眼光來看,Rambus架構或許可以成為主流,但應不再會是主導市場的絕對主流,而SDRAM架構(PC133、DDR)在低成本的優勢,以及廣泛的應用領域,應該會有非常不錯的表現。相信未來的DRAM市場,將會是多種結構並存的局面。

具最新消息,可望成為下一世代內存主力的RambusDRAM因晶元組延遲推出,而氣勢稍挫的情況之下,由全球多家半導體與電腦大廠針對DDRSDRAM的標准化,而共同組成的AMII(、)陣營,則決定積極促進比PC200、PC266速度提高10倍以上的PC1600與PC2100DDRSDRAM規格的標准化,此舉使得RambusDRAM與DDRSDRAM的內存主導權之爭,邁入新的局面。全球第二大微處理器製造商AMD,決定其Athlon處理器將採用PC266規格的DDRSDRAM,而且決定在今年年中之前,開發支持DDRSDRAM的晶元組,這使DDRSDRAM陣營深受鼓舞。全球內存業者極有可能將未來投資的重心,由RambusDRAM轉向DDRSDRAM。
綜上所述,今年DDRSDRAM的發展勢頭要超過RAMBUS。而且DDRSDRAM的生產成本只有SDRAM的1.3倍,在生產成本上更具優勢。未來除了DDR和RAMBUS外還有其他幾種有希望的內存產品,下面介紹其中的幾種:SLDRAM(SyncLinkDRAM,同步鏈接內存):SLDRAM也許是在速度上最接近RDRAM的競爭者。SLDRAM是一種增強和擴展的SDRAM架構,它將當前的4體(Bank)結構擴展到16體,並增加了新介面和控制邏輯電路
。SLDRAM像SDRAM一樣使用每個脈沖沿傳輸數據。
VirtualChannelDRAM:VirtualChannel「虛擬信道」是加裝在內存單元與主控晶元上的內存控制部分之間,相當於緩存的一類寄存器。使用VC技術後,當外部對內存進行讀寫操作時,將不再直接對內存晶元中的各個單元進行讀寫操作,而改由VC代理。VC本身所具有的緩存效果也不容小覷,當內存晶元容量為目前最常見的64Mbit時,VC與內存單元之間的帶寬已達1024bit。即便不考慮前/後台並列處理所帶來的速度提升,光是「先把數據從內存單元中移動到高速的VC中後再由外部進行讀寫」這一基本構造本身就很適於提高內存的整體速度。每塊內存晶元中都可以搭載復數的VC,64Mbit的產品中VC總數為16個。不但每個VC均可以分別對應不同的內存主控設備(MemoryMaster,此處指CPU、南橋晶元、各種擴展卡等等),而且在必要時,還可以把多個VC信道捆綁在一起以對應某個佔用帶寬特別大的內存主控設備。因此,在多任務同時執行的情況下,VC-SDRAM也能保證持續地進行高效率的數據傳輸。VC-SDRAM還有一個特點,就是保持了與傳統型SDRAM的管腳兼容,廠家不需要重新進行主板布線設計就能夠使主板支持它。不過由於它與傳統型SDRAM控制方式不同,因此還需要得到控制晶元組的支持方能使用,目前已支持VC-SDRAM的晶元組有VIA的ApolloPro133系列、ApolloMVP4和SiS的SiS630等。

http://wiki.donews.com/index.php?title=%E5%86%85%E5%AD%98%E5%8F%91%E5%B1%95%E5%8F%B2&oldid=3348

6. 計算機八大常用硬體得發展史

回首三百八十年——計算機編年簡史
作者:葛陵
[史前時代:1623——1895]
1623年:德國科學家契克卡德(W. Schickard)製造了人類有史以來第一台機械計算機,這台機器能夠進行六位數的加減乘除運算。
1642年:法國科學家帕斯卡(B.Pascal)發明了著名的帕斯卡機械計算機,首次確立了計算機器的概念。
1674年:萊布尼茨改進了帕斯卡的計算機,使之成為一種能夠進行連續運算的機器,並且提出了「二進制」數的概念。(據說這個概念來源於中國的八卦)
1725年:法國紡織機械師布喬(B.Bouchon)發明了「穿孔紙帶」的構想。
1805年: 法國機械師傑卡德(J.Jacquard)根據布喬「穿孔紙帶」的構想完成了「自動提花編織機」的設計製作,在後來電子計算機開始發展的最初幾年中,在多款著名計算機中我們均能找到自動提花機的身影。
1822年:英國科學家巴貝奇(C.Babbage)製造出了第一台差分機, 它可以處理3個不同的5位 數,計算精度達到6位小數。
1834年:巴貝奇提出了分析機的概念,機器共分為三個部分:堆棧,運算器,控制器。他的助手, 英國著名詩人拜倫的獨生女阿達•奧古斯塔(Ada Augusta)為分析機編制了人類歷史上第一批計算機程序。
阿達和巴貝奇為計算機的發展創造了不朽的功勛,他們對計算機的預見起碼超前了一個世紀以上,正是他們的辛勤努力,為後來計算機的出現奠定了堅實的基礎。
1847年:英國數學家布爾(G.Boole)發表著作《邏輯的數學分析》。
1852年: 阿達•奧古斯塔(Ada Augusta)去世,年僅36歲。
1854年:布爾發表《思維規律的研究——邏輯與概率的數學理論基礎》,並綜合自己的另一篇文章《邏輯的數學分析》,從而創立了一門全新的學科-布爾代數,為百年後出現的數字計算機的開關電路設計提供了重要的數學方法和理論基礎。
1868年:美國新聞工作者克里斯托夫•肖爾斯(C.Sholes)發明了沿用至今的QWERTY鍵盤。
1871年:為計算機事業貢獻了畢生精力的巴貝奇(C.Babbage)去世。他與阿達所設想的分析機最終也未能問世,但是他們卻為後人留下了一份寶貴的遺產,那就是面對困難不屈不撓的精神,以及那數十種設計方案和程序。
1873年:美國人鮑德溫(F. Baldwin)利用自己過去發明的齒數可變齒輪製造了第一台手搖式計算機。
1886年:美國人Dorr E. Felt (1862-1930), 製造了第一台用按鍵操作的計算器。
1890年:美國在第12次人口普查中使用了由統計學家霍列瑞斯(H.Hollerith)博士發明的製表機,從而完成了人類歷史上第一次大規模數據處理。此後霍列瑞斯根據自己的發明成立了自己的製表機公司,並最終演變成為IBM公司。
1891年:利蘭•斯坦福與其妻子一道在靠近帕洛•阿爾托(Palo Alto)的地方開辦了面積達8,000英畝的斯坦福大學,從而為日後矽谷的誕生埋下了伏筆。
1893年:德國人施泰格爾研製出一種名為「大富豪」的計算機,該計算機是在手搖式計算機的基礎上改進而來,並依靠良好的運算速度和可靠性而佔領了當時的市場,直到1914年第一次世界大戰爆發之前,這種「大富豪」計算機一直暢銷不衰。
1895年: 英國青年工程師弗萊明(J.Fleming)通過「愛迪生效應」發明了人類第一隻電子
[電子管時代:1911——1946]
1911年:6月15日,美國華爾街金融投資家弗林特(C.Flent)投資霍列瑞斯的製表機公司,成立了全新的CTR公司,但公司創立之初並沒有涉足任何電子領域,反而生產諸如碎紙機或者土豆削皮機之類的產品。
1912年:美國青年發明家德•福雷斯特(L.De Forest)在帕洛阿托小鎮首次發現了電子管的放大作用,為電子工業奠定了基礎,而今日的帕洛阿托小鎮也已成為矽谷的中心地帶。
1913年:美國麻省理工學院教授萬•布希(V.Bush)領導製造了模擬計算機「微分分析儀」。機器採用一系列電機驅動,利用齒輪轉動的角度來模擬計算結果。
1924年:矽谷之父特曼擔任斯坦福大學教授,對創建HP、成立斯坦福工業園區起到決定性作用
2月,由霍列瑞斯創辦的製表機公司幾經演變,最終更名為國際商用機器公司,即我們今天看到的IBM。
1935年:IBM製造了IBM601穿孔卡片式計算機,該計算機能夠在一秒鍾內計算出乘法運算。
1936年:阿蘭.圖靈發表論文《論可計算數及其在判定問題中的應用》,首次闡明了現代電腦原理,從理論上證明了現代通用計算機存在的可能性,圖靈把人在計算時所做的工作分解成簡單的動作,與人的計算類似,機器需要:(1)存儲器,用於貯存計算結果;(2)一種語言,表示運算和數字;(3)掃描;(4)計算意向,即在計算過程中下一步打算做什麼;(5)執行下一步計算。具體到一步計算,則分成:(1)改變數字可符號;(2)掃描區改變,如往左進位和往右添位等;(3)改變計算意向等。整個計算過程採用了二進位制,這就是後來人們所稱的「圖靈機」。
20多歲的德國工程師楚澤(K.Zuse)研製出了機械可編程計算機Z1,並採用了二進制形式,其理論基礎即來源於布爾代數。
1937年:11月,美國AT&T貝爾實驗室研究人員斯蒂比茲(G. Stibitz)製造了電磁式數字計算機「Model-K」。
1938年:克勞德•艾爾伍德•香農(Claude Elwood Shannon)發表了著名論文《繼電器和開關電路的符號分析》,首次用布爾代數對開關電路進行了相關的分析,並證明了可以通過繼電器電路來實現布爾代數的邏輯運算,同時明確地給出了實現加,減,乘,除等運算的電子電路的設計方法。這篇論文成為開關電路理論的開端。
1939年:元旦,美國斯坦福大學研究生比爾•休利特(B.Hewllet)和戴維•帕卡德(D.Packard)正式簽署企業合夥協議,創辦了Hewllet-Packard(HP)公司,即國內通稱的惠普公司。
9月,貝爾實驗室研製出M-1型計算機。
10月,約翰.阿塔納索夫(John Vincent Atanasoff(1903-1995))製造了後來舉世聞名的ABC計算機的第一台樣機,並提出了計算機的三條原則,(1)以二進制的邏輯基礎來實現數字運算,以保證精度; (2)利用電子技術來實現控制,邏輯運算和算術運算,以保證計算速度; (3)採用把計算功能和二進制數更新存貯的功能相分離的結構。這就是著名的計算機三原則。
1940年:9月,貝爾實驗室在美國達特默思大學演示M—1型機。他們用電報線把安置在校園內的M—1型機和相連,當場把一個數學問題列印出來並傳輸到紐約,M—1型機在達特默思大學的成功表演,首次實現了人類對計算機進行的遠距離控制的夢想。
控制論之父維納提出了計算機五原則,(1)不是模擬式,而是數字式;(2)由電子元件構成,盡量減少機械部件;(3)採用二進制,而不是十進制;(4)內部存放計算表;(5)在計算機內部存貯數據。
1941年:楚澤完成了Z3計算機的研製工作,這是第一台可編程的電子計算機。可處理7位指數、14位小數。使用了大量的真空管。每秒種能作3到4次加法運算,一次乘法需要3到5秒。
1942年:時任美國依阿華州立大學數學物理教授的阿塔納索夫(John V. Atanasoff)與研究生貝瑞(Clifford Berry)組裝了著名的ABC(Atanasoff-Berry Computer)計算機,共使用了300多個電子管,這也是世界上第一台具有現代計算機雛形的計算機。但是由於美國政府正式參加第二次世界大戰,致使該計算機並沒有真正投入運行。
1943年:貝爾實驗室把U型繼電器裝入計算機設備中,製成了M—2型機,這是最早的編程計算機之一。此後的兩年中,貝爾實驗室相繼研製成功了M-3和M-4型計算機,但都與M-2型類似,只是存儲器容量更大了一些。
10月,綽號為「巨人」的用來破譯德軍密碼的計算機在英國布雷契萊庄園製造成功,此後又製造多台,為第二次世界大戰的勝利立下了汗馬功勞。
1944年:8月7日,由IBM出資,美國人霍德華•艾肯(H.Aiken)負責研製的馬克1號計算機在哈佛大學正式運行,它裝備了15萬個元件和長達800公里的電線, 每分鍾能夠進行200次以上運算。女數學家格雷斯•霍波(G.Hopper)為它編制了計算程序,並聲明該計算機可以進行微分方程的求解。馬克1號計算機的問世不但實現了巴貝奇的夙願,而且也代表著自帕斯卡計算機問世以來機械計算機和電動計算機的最高水平。
1946年:2月14日,美國賓西法尼亞大學摩爾學院教授莫契利(J. Mauchiy)和埃克特(J.Eckert)共同研製成功了ENIAC (Electronic Numerical Integrator And Computer):計算機。這台計算機總共安裝了17468隻電子管,7200個二極體,70000多電阻器,10000多 只電容器和6000隻繼電器,電路的焊接點多達50萬個,機器被安裝在一排2.75米高的金屬櫃里,佔地面積為170平方米左右,總重量達 到30噸,其運算速度達到每秒鍾5000次加法,可以在3/1000秒時間內做完兩個10位數乘法。
[晶體管時代:1947——1958]
1947年:12月23號,貝爾實驗室的肖克利(William B. Shockley),布拉頓(John Bardeen),巴丁(Walter H. Brattain)創造出了世界上第一隻半導體放大器件,他們將這種器件重新命名為「晶體管」
從上到下依次為:肖克利,布拉頓和巴丁
1948年:6月10日,香農在《貝爾系統技術雜志》(Bell System Technical Journal)上連載發表了他影像深遠的論文《通訊的數學原理》,並於次年在同一雜志上發表了自己的另一著名論文《雜訊下的通信》。在這兩篇論文中,香農闡明了通信的基本問題,給出了通信系統的模型,提出了信息量的數學表達式,並解決了信道容量、信源統計特性、信源編碼、信道編碼等一系列基本技術問題。兩篇論文成為了資訊理論的奠基性著作,此時尚不足三十歲的香農也成為了資訊理論的奠基人。
12月,ENAIC的兩位締造者共同創辦了世界上第一家電腦公司「埃克特—莫契利計算機公司」(EMCC)。
莫契利
埃克特
1949年:當時尚在美國哈佛大學計算機實驗室的上海籍華人留學生王安向美國國家專利局申請了磁芯的專利。
貝爾實驗室製造了M系列計算機的最後一個型號:M-6,並從此不在涉足計算機的研製與生產。貝爾實驗室所研製的M系列繼電器計算機,是從機械計算機過波到電子計算機的重要橋梁。
9月,「馬克」3號計算機研製成功,「馬克」3號也是霍德華•艾肯研製的第一台內存程序的大型計算機,他在這台計算機上首先使用了磁鼓作為數與指令的存儲器,這是計算機發展史上的一項重大改進,從此磁鼓成為第一代電子管計算機中廣泛使用的存儲器。
英國劍橋大學數學實驗室的Wilkes和他的小組建成了一台存儲程序的計算機EDSAC,輸入輸出設備仍是紙帶。
1950年:東京帝國大學的Yoshiro Nakamats發明了軟磁碟,從而開創了計算機存儲的新紀元。
10月,阿蘭.圖靈發表自己另外一篇及其重要的論文《機器能思考嗎》,從而為人工智慧奠定了基礎,圖靈也獲得了「人工智慧之父」的美譽。甚至有人說在第一代電腦占統治地位的那個時代,這篇論文我們可以把它看作第五代,第六代電腦的宣言書。
1951年:6月14日,當時已在雷明頓—蘭德(Remington-Rand)公司任職的莫契利和埃克特再次聯袂製造的UNIVAC計算機正式移交美國人口普查局使用,從而使電腦走出了實驗室,開始為人類社會服務,從此人類社會進入了計算機時代。
6月,王安創辦了王安實驗室,即王安電腦公司的前身,從此開始了王安電腦傳奇般的歷程。
1952年:1月,由計算機之父,馮•諾伊曼(Von Neumann)設計的IAS電子計算機EDVAC問世。這台IAS計算機總共採用了2300個電子管,運算速度卻比擁有18000個電子管的「埃尼阿克」提高了10倍,馮•諾伊曼的設想在這台計算機上得到了圓滿的體現。
1953年:4月7日,IBM正式對外發布自己的第一台電子計算機 IBM701。並邀請了馮•諾依曼、肖克利和奧本海默等人共150名各界名人出席揭幕儀式,為自己的第一台計算機宣傳。
8月,IBM發布了應用與會計行業的IBM702計算機。
1954年:6月8日,阿蘭.圖靈去世。
IBM推出了中型計算機IBM650,以低廉的價格和優異的性能在市場中獲得了極大的成功,至此,IBM在市場中確立了領導者的地位。
貝爾實驗室使用800隻晶體管組裝了世界上第一台晶體管計算機TRADIC。
1956年:美國達特莫斯大學(Dartmouth)青年助教麥卡錫,哈佛大學明斯基、貝爾實驗室香農(E.Shannon)和IBM公司信息研究中心羅徹斯特(N. Lochester)共同在達特莫斯大學舉辦了一個沙龍式的學術會議,他們邀請了卡內基—梅隆大學紐厄爾和赫伯特•西蒙、麻省理工學院塞夫里奇(O. Selfridge)和索羅門夫(R.Solomamff),以及IBM公司塞繆爾(A.Samuel)和莫爾(T.More)。這就是著名的「達特莫斯」會議。在經過充分的討論後,他們首次提出了「人工智慧」這一術語,從而標志著人工智慧作為一門新興學科的出現。
9月,IBM的一個工程小組向世界展示了第一台磁碟存儲系統IBM 350 RAMAC(Random Access Method of Accounting and Control)
1957年:8月,「數字設備公司」(簡稱DEC)在美國波士頓成立。創立者是來自於麻省理工學院的肯•奧爾森(K.Olsen)。此後的數十年中,DEC公司依靠自己的PDP系列,開創了小型機時代。
10月,諾依斯(N. Noyce)、摩爾(R.Moore)、布蘭克(J.Blank)、克萊爾(E.Kliner)、赫爾尼(J.Hoerni)、拉斯特(J.Last)、羅伯茨(S.Boberts)和格里尼克(V.Grinich)共同從晶體管之父肖克利的實驗室出走,創辦了仙童(fairchild)公司,這就是歷史上著名的「八天才叛逆」,從此,才有了我們熟悉的intel, AMD,IDT等等一大批我們熟知的企業。
八天才叛逆的兩個重要人物,諾里斯和摩爾。
1958年:11月,IBM推出了自己的IBM709大型計算機,這時IBM公司自IBM701以來性能最為優秀的電子管計算機,但同時它也是IBM最後一款電子管計算機。

[集成電路時代:1959——1970]
1959年:2月6日, 來自曾開發出第一台晶體管收音機的TI公司的基爾比(J.Kilby) 向美國專利局申報專利「半導體集成電路」。
7月30日,仙童公司向美國專利局申請專利「半導體集成電路」
1960年:麻省理工學院教授約瑟夫•立克里德(J.Licklider)發表了著名的計算機研究論文《人機共生關系》,從而提出了分時操作系統的構想,並第一次實現了計算機網路的設想。
1962年:供職於藍德公司的保羅•巴蘭發表了一篇具有里程碑式意義的學術報告《論分布式通信》,在文中他首次提出了「分布式自適應信息塊交換」,這就是我們現在稱之為「分組交換」的通訊技術。
1963年:8月,控制數據公司(CDC)的西蒙•克雷(S. Cray)博士帶領自己的研發小組研製成功CDC6600巨型機,CDC6600仍屬於第二代電腦,共安裝了35萬個晶體管。
1964年: 4月7日,在IBM成立50周年之際,由年僅40歲的吉恩•阿姆達爾(G. Amdahl)擔任主設計師,歷時四年研發的IBM360計算機問世,標志著第三代計算機的全面登場,這也是IBM歷史上最為成功的機型。
1965年:DEC公司推出了PDP-8型計算機,標志著小型機時代的到來。
當時尚在仙童公司的摩爾發表了一篇僅有三頁篇幅的論文,這就是對今後半導體發展有著深遠意義的「摩爾定律」。
1966年:時任美國國防部高級研究規劃屬(ARPA)信息處理技術辦公室(IPTO)主管的鮑伯•泰勒啟動了「阿帕」(ARPA)網的研究計劃。雖然他本人在事後一直強調「阿帕」網本身不是用於軍事目的,但是他所在的部門卻是冷戰時期的產物。
1968年:IBM公司首次提出「溫徹斯特/Winchester」技術,探討對硬碟技術做重大改造的可能性。
4月,「通用數據公司」(簡稱DGC)成立,創辦人為從DEC離職的PDP-8設計師卡斯特羅。
7月18日,從仙童公司辭職的戈登.摩爾(Gordon.Moore),羅伯特.諾伊斯(Robert.Noyce),威廉.肖克利(William.Shockley)共同創立了Intel公司,從此為計算機的發展和普及做出了不可磨滅的貢獻。
12月9日,美國加利福尼亞大學的恩格巴特(Douglas Englebart)博士發明了世界上第一隻滑鼠。它的工作原理即通過底部小球的滾動帶動樞軸轉動,並帶動變阻器改變阻值來產生位移信號,信號經計算機處理,屏幕上的游標就可以移動。恩格巴特博士設計滑鼠的初衷就是想通過這種簡便的操作方式來代替繁瑣的鍵盤操作,但是在滑鼠誕生最初的十多年中人們並沒有認識到這種操作方式的簡便性,直到1984年蘋果Macintosh的誕生才改變了人們的陳舊觀念。
(另有一種說法為恩格巴特博士於1964年發明了世界上第一隻滑鼠,並於1968年的IEEE會議上正式對外公布了其發明。)
1969年:DGC公司推出了自己的小型機Nova,成功的打入了一直被DEC把持的小型機市場,並成為當年最為紅火的新興企業。
貝爾實驗室的ken Thompson,Dennis Ritchie在一部PDP-7上開發了Unix操作系統。
5月1日,桑德斯(Jerry Sanders)從仙童公司辭職,並利用十萬美元創立了AMD公司。
10月29日,阿帕網美國加州大學洛杉磯分校(UCLA)節點與斯坦福研究院(SRI)節點實現了第一次分組交換技術的遠程通訊,這也標志著互聯網的正式誕生。
1970年:首次提出「兼容性」概念的IBM360之父吉恩•阿姆達爾(G. Amdahl)由於IBM否決了繼續開發大型機的計劃而離開了IBM公司,並創立了Amdahl公司,開始在大型機領域向IBM發出挑戰。雖然在此後不久他就喪失了對公司的控制權,但是他又接連創辦了三步曲、Grid公司和CDS公司,可是均宣告失敗。阿姆達爾本人最終病逝於1996年。
10月,美國施樂(Xerox)公司在今天矽谷的帕洛阿托成立了Palo Alto Research Center(PARC)研究中心,更為重要的是施樂並沒有為來到這里的科學家制定任何地研究計劃,而是讓他們自由得發揮。在此後的幾年中,PARC誕生了乙太網、滑鼠、面相對象、圖標、菜單、視窗等等一系列改變今後計算機發展方向的全新概念,並間接孵化了Windows、Office、Macintosh等劃時代的軟體作品,從其間走出的科學家還創立了Adobe、3Com、Novell等等改變IT世界格局的企業。

[微處理器時代:1971——1979]
1971年:來自《電子新聞》的記者唐·赫夫勒(Don Hoefler)依據半導體中的主要成分硅命名了當時帕洛阿托地區,矽谷由此得名
1月,INTEL的特德.霍夫研製成功了第一枚能夠實際工作的微處理器4004,該處理器在面積約12平方毫米的晶元上集成了2250個晶體管,運算能力足以超過ENICA。Intel於同年11月15日正式對外公布了這款處理器。
1972年:曾經開發了Unix操作系統的Dennis Ritchie領導開發出C語言。
原CDC公司的西蒙•克雷(S. Cray)博士獨自創立「克雷研究公司」,專注於巨型機領域。
1973年:5月22日,由施樂PARC研究中心的鮑伯·梅特卡夫(Bob Metcalfe)組建的世界上第一個個人計算機區域網絡--ALTO ALOHA網路開始正式運轉,梅特卡夫將該網路改名為「乙太網」。
1974年:
4月1日,Intel推出了自己的第一款8位微處理晶元8080。
12月,電腦愛好者愛德華•羅伯茨(E.Roberts)發布了自己製作的裝配有8080處理器的計算機「牛郎星」,這也是世界上第一台裝配有微處理器的計算機,從此掀開了個人電腦的序幕。
1975年:克雷完成了自己的第一個超級計算機「克雷一號」(CARY-1),實現了每秒一億次的運算速度。該機佔地不到7平方米,重量不超過5噸,共安裝了約35萬塊集成電路,同時這也標志著巨型機跨進了第三代電腦的行列。
7月,比爾•蓋茨(B.Gates)在成功為牛郎星配上了BASIC語言之後從哈佛大學退學,與好友保羅.艾倫(Paul Allen)一同創辦了微軟公司,並為公司制定了奮斗目標:「每一個家庭每一張桌上都有一部微型電腦運行著微軟的程序!」
1976年:4月1日,斯蒂夫.沃茲尼亞克(Stephen Wozinak)和斯蒂夫.喬布斯(Stephen Jobs)共同創立了蘋果公司,並推出了自己的第一款計算機:Apple-Ⅰ。
6月,美國伊利諾斯大學的兩位數學家沃爾夫岡•哈肯(W.Haken)和肯尼斯•阿佩爾(K. Apple)利用計算機成功的證明了困擾世界數學界長達100多年的「四色定理」
(註:四色定理在1852年被提出,即任何地圖均可由四種顏色組成就能區分所有兩相鄰的國家和地區)
9月,施振容創立宏基公司。
10月,雅達利公司推出了世界上第一款3D電子游戲《夜行車手》(Night Driver),游戲只有黑白兩色,採用第一人稱視角。
1977年:6月,拉里.埃里森(Larry Ellison)與自己的好友Bob Miner和Edward Oates一起創立了甲骨文公司(Oracle Corporation)。
1979年:6月,鮑伯·梅特卡夫離開了PARC,並同Howard Charney、Ron Crane、Greg Shaw和 Bill Kraus組成一個計算機通信和兼容性公司,這就是現在著名的3Com公司。

[PC時代一 :1980——1985]
1980年:年初,當時尚不知名的Novell公司推出了NetWare網路操作系統。
9月30日,DEC、Intel和Xerox共同發布了「乙太網」技術規范,這就是現在著名的乙太網藍皮書。
1981年:7月,沈望傅創立了創新科技公司。
8月12日,經過了一年的艱苦開發,由後來被IBM內部尊稱為PC機之父的唐•埃斯特奇(D.Estridge)領導的開發團隊完成了IBM個人電腦的研發,IBM宣布了IBM PC的誕生,由此掀開了改變世界歷史的一頁。
8月12日,微軟推出來MS-DOS 1.0版。
1982年:一名年僅15歲的少年通過計算機網路闖入了「北美空中防務指揮系統」,這是首次發現的從外部侵襲的網路事件。這個年輕人就是後來被判入獄的世界頭號黑客,被美國聯邦法院宣判終生不得接觸計算機產品的凱文.米特尼克。他的另一件「事跡」就是在1994年的時候向聖迭戈超級計算機中心發動進攻,將整個互聯網置於危險的境地。
2月,康尼恩(R.Canion)、史蒂麥克(G.Stimac)和巴雷斯(H.Barnes)共同成立了康柏(Compaq)公司。
2月, Intel發布80286處理器。時鍾頻率提高到20MHz,並增加了保護模式,可訪問16M內存。支持1GB以上的虛擬內存。每秒執行270萬條指令,集成了134000個晶體管。
9月29日,3Com公司推出了世界上第一款網卡-EtherLink網路介面卡,這也是世界上第一款應用於IBM-PC上的ISA介面網路適配器。
11月,康柏公司推出了攜帶型PC機Portable,這也是第一台非IBM製造的PC兼容機。
1983年:1月,蘋果公司推出了研製費用高達5000萬美元的麗薩(Lisa)電腦,這也是世界上第一台商品化的圖形用戶界面的個人計算機,同時這款電腦也第一次配備了滑鼠。
5月8日,IBM推出了IBM PC的改進型號IBM PC/XT,並為其內置了硬碟。
1984年:邁克爾•戴爾創立了DELL公司。
聯想公司成立。
來自英國的Adlib Audio公司推出了第一款音效卡:魔奇音效卡,從而讓PC擁有了真正的發聲能力。
1月24日,蘋果公司推出了劃時代的Macintosh計算機,不僅首次採用了圖形界面的操作系統,並且第一次使個人計算機具有了多媒體處理能力。
8月14日,IBM推出了採用intel 80286處理器的IBM PC/AT電腦。
年底,康柏開始開發IDE介面。
1985年:Philips和Sony合作推出CD-ROM驅動器。
ATI(Array Technology Instry)成立。
7月,intel公司推出了計算機歷史上有著舉足輕重地位的80386處理器,這也是intel公司的第一枚32位處理器。
11月,在經歷了多次延期之後,微軟公司終於正式推出了Windows操作系統。
[PC時代二:1986——1994]
1986年:9月,康柏公司第一次領先於IBM推出桌上型386個人電腦Deskpro PC,這在當時引起了不小的轟動。
同月,Amstrad Announced發布便宜且功能強大、面向家庭設計的計算機Amstrad PC 1512。該機具有CGA圖形適配器、512KB內存、8086處理器20兆硬碟驅動器,並採用了滑鼠器和圖形用戶界面。
1987年:4月2日,IBM推出PS/2系統。最初基於8086處理器和老的XT匯流排。後來過渡到80386,開始使用3.5英寸1.44MB軟盤驅動器。引進了微通道技術,這一系列機型在市場中取得了巨大成功,累計出貨量達到200萬台。
11月,微軟推出了Windows 2.0版。相比於上一個版本,微軟加入了動態數據交換和覆蓋式窗口等先進技術。
1988年:11月2日,由 23歲研究生羅伯特•莫里斯(R.T.Morris)編制的「蠕蟲」病毒在互聯網上大規模發作,這也是互聯網第一次遭受病毒的侵襲,從此,計算機病毒逐漸傳播開來。
1989年:4月10 日,英特爾公司在拉斯維加斯電腦大展上首度發表集成有120萬晶體管的486處理器。
4月,華碩(ASUS)公司在台灣成立。
11月,SoundBlast Card音效卡正式發布。
1990年:蘋果公司聯合Motorola和IBM公司一同開發了基於RISC結構的微處理器PowerPC,為的就是能夠同Intel公司的X86系列處理器相抗衡。
3月24日,因患癌症,王安病逝於美國馬薩諸塞州立總醫院。
5月5日, 紐約地方法院正式開庭,判處88年「蠕蟲」病毒製造者莫里斯3年緩刑,罰款1萬美元和400小時公益勞動。
5月22日,微軟宣布推出Windows 3.0操作系統,並在年底創下銷售100萬套的紀錄。當時的Windows 3.0操作系統提供了對多媒體,網路等眾多最先進技術的支持,從而被成為軟體技術的一場革命。
。。。。。。。。。。。。。。。。。。。。。。。

7. 簡要介紹下計算機存儲器的發展

計算機怎麼是這樣一個驚人的小配件? 對許多人他們可以’ t是,因此驚奇關於怎樣計算機改變了我們居住的方式。 計算機在許多大小和形狀可能現在被發現。 幾乎每家電似乎有他們被找出的自己的微型計算機某處。 從汽車到大廈對幾乎每個小配件有,每一個大多時間有計算機工作做他們跑和改變我們居住生活的方式。

首要,計算機的最重要的組分是它的處理器。 它被認為做所有計算和處理計算機的心臟。 但與所有處理的那計算和,計算機贏取了’ t是這樣一個卓越的小配件如果不為它驚人的記憶。 計算機存儲器使成為可能保留重要信息關於計算機。 可以再次使用這樣數據和被檢索當有些存儲的數據是需要的時。 不用計算機存儲器,處理器在哪裡不會有設施存放它的,從而使他們的重要演算和過程無用。

有分配的計算機存儲器的不同的類型存放數據的不同的類型。 當它來到存放必要的數據在計算機裡面時,他們也有不同的能力和專業。 最響譽的計算機存儲器是RAM,否則通認作為隨機存取存儲器。 它稱隨機存取,因為所有存儲的數據可以直接地訪問,如果您知道相交某一存儲單元的確切的列和專欄。 在計算機存儲器的這個類型,數據可以按任何順序訪問。 RAM ’ s確切在對面稱SAM或串列存取記憶,存放數據參加一系列存儲單元可能按順序只訪問。 它經營很象盒式磁帶,您必須審閱其他存儲單元在訪問您尋找的數據之前。

計算機存儲器的其他類型包括ROM或只讀存儲器。 ROM是集成電路已經編程以不可能修改或改變的具體數據,因此僅命名“讀的”。 也有計算機存儲器叫的虛擬內存的另一個類型。 記憶的這個類型是一個共同的組分在多數操作系統和桌面。 它幫助計算機RAM釋放以未使用的應用做方式為裝載使用的當前應用。 它在計算機’ s硬碟簡單地運作在檢查在RAM存放的數據旁邊最近不使用並且安排它被存放,從而釋放可貴的空間在RAM為裝載其他應用。 一個虛擬內存將做一台計算機認為它有幾乎無限的RAM在它裡面。

的計算機存儲器的另一個類型使計算機處理任務更加快速是什麼稱高速緩沖存儲器。 高速緩沖存儲器簡單地運作在有旁邊當前應用、在它的記憶存放的演算和過程而不是直接地到主要儲藏區域。 當某一過程是需要早先半新的數據,它首先將設法訪問高速緩沖存儲器,如果這樣數據在訪問中央記憶貯存區之前被存放那裡。 這從尋找數據在一個更大和更大的記憶貯存區釋放計算機並且使數據提取更加快速。 計算機存儲器在發展一個恆定的狀態,當技術越來越被開發。 誰知道,計算機存儲器也許為人的消耗量也在不久將來可能適合。

8. 相變存儲器的發展歷史

二十世紀五十年代至六十年代,Dr. Stanford Ovshinsky開始研究無定形物質的性質。無定形物質是一類沒有表現出確定、有序的結晶結構的物質。1968年,他發現某些玻璃在變相時存在可逆的電阻系數變化。1969年,他又發現激光在光學存儲介質中的反射率會發生響應的變化。1970年,他與他的妻子Dr. Iris Ovshinsky共同建立的能量轉換裝置(ECD)公司,發布了他們與Intel的Gordon Moore合作的結果。1970年9月28日在Electronics發布的這一篇文章描述了世界上第一個256位半導體相變存儲器。
近30年後,能量轉換裝置(ECD)公司與MicronTechnology前副主席Tyler Lowery建立了新的子公司Ovonyx。在2000年2月,Intel與Ovonyx發表了合作與許可協議,此份協議是現代PCM研究與發展的開端。2000年12月,STMicroelectronics(ST)也與Ovonyx開始合作。至2003年,以上三家公司將力量集中,避免重復進行基礎的、競爭的研究與發展,避免重復進行延伸領域的研究,以加快此項技術的進展。2005年,ST與Intel發表了它們建立新的快閃記憶體公司的意圖,新公司名為Numonyx。
在1970年第一份產品問世以後的幾年中,半導體製作工藝有了很大的進展,這促進了半導體相變存儲器的發展。同時期,相變材料也愈加完善以滿足在可重復寫入的CD與DVD中的大量使用。Intel開發的相變存儲器使用了硫屬化物(Chalcogenides),這類材料包含元素周期表中的氧/硫族元素。Numonyx的相變存儲器使用一種含鍺、銻、碲的合成材料(Ge2Sb2Te5),多被稱為GST。現今大多數公司在研究和發展相變存儲器時都都使用GST或近似的相關合成材料。大部分DVD-RAM都是使用與Numonyx相變存儲器使用的相同的材料。
2011年8月31日,中國首次完成第一批基於相變存儲器的產品晶元。
2015年,《自然·光子學》雜志布了世界上第一個或可長期存儲數據且完全基於光的相變存儲器。

9. 誰能告訴我內存條的發展史!拜託!

作為PC不可缺少的重要核心部件——內存,它伴隨著DIY硬體走過了多年歷程。從286時代的30pin SIMM內存、486時代的72pin SIMM 內存,到Pentium時代的EDO DRAM內存、PII時代的SDRAM內存,到P4時代的DDR內存和目前9X5平台的DDR2內存。內存從規格、技術、匯流排帶寬等不斷更新換代。不過我們有理由相信,內存的更新換代可謂萬變不離其宗,其目的在於提高內存的帶寬,以滿足CPU不斷攀升的帶寬要求、避免成為高速CPU運算的瓶頸。那麼,內存在PC領域有著怎樣的精彩人生呢?下面讓我們一起來了解內存發展的歷史吧。

一、歷史起源——內存條概念

如果你細心的觀察,顯存(或緩存)在目前的DIY硬體上都很容易看到,顯卡顯存、硬碟或光碟機的緩存大小直接影響到設備的性能,而寄存器也許是最能代表PC硬體設備離不開RAM的,的確如此,如果沒有內存,那麼PC將無法運轉,所以內存自然成為DIY用戶討論的重點話題。

在剛剛開始的時候,PC上所使用的內存是一塊塊的IC,要讓它能為PC服務,就必須將其焊接到主板上,但這也給後期維護帶來的問題,因為一旦某一塊內存IC壞了,就必須焊下來才能更換,由於焊接上去的IC不容易取下來,同時加上用戶也不具備焊接知識(焊接需要掌握焊接技術,同時風險性也大),這似乎維修起來太麻煩。

因此,PC設計人員推出了模塊化的條裝內存,每一條上集成了多塊內存IC,同時在主板上也設計相應的內存插槽,這樣內存條就方便隨意安裝與拆卸了(如圖1),內存的維修、升級都變得非常簡單,這就是內存「條」的來源。
小帖士:內存(Random Access Memory,RAM)的主要功能是暫存數據及指令。我們可以同時寫數據到RAM 內存,也可以從RAM 讀取數據。由於內存歷來都是系統中最大的性能瓶頸之一,因此從某種角度而言,內存技術的改進甚至比CPU 以及其它技術更為令人激動。
……………………

以上未完部分,我不轉貼了,在下面的網址,我個人認為是非常全面的了:
http://www.incpc.net/Html/histroy/20060907817.html

給你一點參考吧,雖然我不支持寫論文從網上搬點東西來。

DOS操作系統最早設計時,PC機的硬體系統只支持1M位元組的定址空間,所以DOS只能管理最多1M位元組的連續內存空間。在這1M內存中,又只有640K被留給應用程序使用,它們被稱為常規內存或基本內存,其它384K被稱為高端內存,是留給視頻顯示和BIOS等使用的。在1982年,640K內存對微型計算機來說顯得綽綽有餘,人們甚至認為,640K的內存可以用來干任何事。現在看起來有些可笑,但在當時,情況確實如此。

現在的情況是,即使你的電腦裝有幾兆或幾十兆內存,但如果你使用DOS操作系統,那麼你也只有640K的內存可以直接使用,1M以上的內存要通過一些內存管理工具才能使用。值得慶幸的是,Windows 95已經不存在常規內存的限制了,你所有的內存,不管是8M還是128M,都可以被直接使用。

在DOS下,系統中存在以下四種內存:
常規內存(Conventional Memory);
高端內存(Upper Memory);
擴充內存(Expanded Memory);
擴展內存(Extended Memory)。

常規內存指的是0-640K的內存區。在DOS下,一般的應用程序只能使用系統的常規內存,因而都要受到640KB內存的限制。而且由於DOS本身和config.sys文件中的安裝的設備驅動程序和autoexec.bat文件中執行的內存駐留程序都要佔用一些常規內存,所以應用程序能使用的常規內存是不到640K的。有很多時候,我們都要想方設法地整理內存,好為一些「胃口」比較大的應用程序留出足夠的常規內存,這一點想必是許多DOS時代的電腦愛好者最熟悉不過的了。

高端內存是指位於常規內存之上的384K內存。程序一般不能使用這個內存區域,但是EMM386.exe可以激活高端內存的一部分,並且它允許用戶將某些設備驅動程序和用戶程序用Devicehigh或LH(即loadhigh)裝入高端內存。dos=high,umb也是把DOS的一部分裝到高端內存里。這里的umb是高端內存塊(Upper Memory Block)的縮寫。

擴充內存是一種早期的增加內存的標准,最多可擴充到32M。使用擴充內存必須在計算機中安裝專門的擴充內存板,而且還要安裝管理擴充內存板的管理程序。由於擴充內存是在擴展內存之前推出的,所以大多數程序都被設計成能使用擴充內存,而不能使用擴展內存。由於擴充內存使用起來比較麻煩,所以在擴展內存出現後不久就被淘汰了。

擴展內存只能用在80286或更高檔次的機器上,目前幾乎所有使用DOS的機器上超過1M的內存都是擴展內存。擴展內存同樣不能被DOS直接使用,DOS5.0以後提供了Himem.sys這個擴展內存管理程序,我們可以通過它來管理擴展內存。emm386.exe可以把擴展內存(XMS)模擬成擴充內存(EMS),以滿足一些要求使用擴充內存的程序。

最後再強調一下,不管擴充內存或擴展內存有多大,DOS的應用程序只能在常規內存下運行。有的程序可以通過DOS擴展器(比如DOS4GW.exe等程序)使CPU進入保護模式,從而直接訪問擴展內存;但是要注意,進入保護模式以後,計算機就脫離了DOS狀態。

在計算機的組成結構中,有一個很重要的部分,就是存儲器。存儲器是用來存儲程序和數據的部件,對於計算機來說,有了存儲器,才有記憶功能,才能保證正常工作。存儲器的種類很多,按其用途可分為主存儲器和輔助存儲器,主存儲器又稱內存儲器(簡稱內存).內存在電腦中起著舉足輕重的作用。內存一般採用半導體存儲單元,包括隨機存儲器(RAM),只讀存儲器(ROM),以及高速緩存(CACHE)。只不過因為RAM是其中最重要的存儲器。S(SYSNECRONOUS)DRAM 同步動態隨機存取存儲器:SDRAM為168腳,這是目前PENTIUM及以上機型使用的內存。SDRAM將CPU與RAM通過一個相同的時鍾鎖在一起,使CPU和RAM能夠共享一個時鍾周期,以相同的速度同步工作,每一個時鍾脈沖的上升沿便開始傳遞數據,速度比EDO內存提高50%。DDR(DOUBLE DATA RAGE)RAM :SDRAM的更新換代產品,他允許在時鍾脈沖的上升沿和下降沿傳輸數據,這樣不需要提高時鍾的頻率就能加倍提高SDRAM的速度。

●內存

內存就是存儲程序以及數據的地方,比如當我們在使用WPS處理文稿時,當你在鍵盤上敲入字元時,它就被存入內存中,當你選擇存檔時,內存中的數據才會被存入硬(磁)盤。在進一步理解它之前,還應認識一下它的物理概念。

●只讀存儲器(ROM)

ROM表示只讀存儲器(Read Only Memory),在製造ROM的時候,信息(數據或程序)就被存入並永久保存。這些信息只能讀出,一般不能寫入,即使機器掉電,這些數據也不會丟失。ROM一般用於存放計算機的基本程序和數據,如BIOS ROM。其物理外形一般是雙列直插式(DIP)的集成塊。

●隨機存儲器(RAM)

隨機存儲器(Random Access Memory)表示既可以從中讀取數據,也可以寫入數據。當機器電源關閉時,存於其中的數據就會丟失。我們通常購買或升級的內存條就是用作電腦的內存,內存條(SIMM)就是將RAM集成塊集中在一起的一小塊電路板,它插在計算機中的內存插槽上,以減少RAM集成塊佔用的空間。目前市場上常見的內存條有128M/條、256M/條、512M/條等。

●高速緩沖存儲器(Cache)

Cache也是我們經常遇到的概念,它位於CPU與內存之間,是一個讀寫速度比內存更快的存儲器。當CPU向內存中寫入或讀出數據時,這個數據也被存儲進高速緩沖存儲器中。當CPU再次需要這些數據時,CPU就從高速緩沖存儲器讀取數據,而不是訪問較慢的內存,當然,如需要的數據在Cache中沒有,CPU會再去讀取內存中的數據。

當你理解了上述概念後,也許你會問,內存就是內存,為什麼又會出現各種內存名詞,這到底又是怎麼回事呢?

在回答這個問題之前,我們再來看看下面這一段。

物理存儲器和地址空間

物理存儲器和存儲地址空間是兩個不同的概念。但是由於這兩者有十分密切的關系,而且兩者都用B、KB、MB、GB來度量其容量大小,因此容易產生認識上的混淆。初學者弄清這兩個不同的概念,有助於進一步認識內存儲器和用好內存儲器。

物理存儲器是指實際存在的具體存儲器晶元。如主板上裝插的內存條和裝載有系統的BIOS的ROM晶元,顯示卡上的顯示RAM晶元和裝載顯示BIOS的ROM晶元,以及各種適配卡上的RAM晶元和ROM晶元都是物理存儲器。

存儲地址空間是指對存儲器編碼(編碼地址)的范圍。所謂編碼就是對每一個物理存儲單元(一個位元組)分配一個號碼,通常叫作「編址」。分配一個號碼給一個存儲單元的目的是為了便於找到它,完成數據的讀寫,這就是所謂的「定址」(所以,有人也把地址空間稱為定址空間)。

地址空間的大小和物理存儲器的大小並不一定相等。舉個例子來說明這個問題:某層樓共有17個房間,其編號為801~817。這17個房間是物理的,而其地址空間採用了三位編碼,其范圍是800~899共100個地址,可見地址空間是大於實際房間數量的。

對於386以上檔次的微機,其地址匯流排為32位,因此地址空間可達232即4GB。但實際上我們所配置的物理存儲器通常只有1MB、2MB、4MB、8MB、16MB、32MB等,遠小於地址空間所允許的范圍。

好了,現在可以解釋為什麼會產生諸如:常規內存、保留內存、上位內存、高端內存、擴充內存和擴展內存等不同內存類型。

各種內存概念

這里需要明確的是,我們討論的不同內存的概念是建立在定址空間上的。

IBM推出的第一台PC機採用的CPU是8088晶元,它只有20根地址線,也就是說,它的地址空間是1MB。

PC機的設計師將1MB中的低端640KB用作RAM,供DOS及應用程序使用,高端的384KB則保留給ROM、視頻適配卡等系統使用。從此,這個界限便被確定了下來並且沿用至今。低端的640KB就被稱為常規內存即PC機的基本RAM區。保留內存中的低128KB是顯示緩沖區,高64KB是系統BIOS(基本輸入/輸出系統)空間,其餘192KB空間留用。從對應的物理存儲器來看,基本內存區只使用了512KB晶元,佔用0000至80000這512KB地址。顯示內存區雖有128KB空間,但對單色顯示器(MDA卡)只需4KB就足夠了,因此只安裝4KB的物理存儲器晶元,佔用了B0000至B10000這4KB的空間,如果使用彩色顯示器(CGA卡)需要安裝16KB的物理存儲器,佔用B8000至BC000這16KB的空間,可見實際使用的地址范圍都小於允許使用的地址空間。

在當時(1980年末至1981年初)這么「大」容量的內存對PC機使用者來說似乎已經足夠了,但是隨著程序的不斷增大,圖象和聲音的不斷豐富,以及能訪問更大內存空間的新型CPU相繼出現,最初的PC機和MS-DOS設計的局限性變得越來越明顯。

1.什麼是擴充內存?

EMS工作原理

到1984年,即286被普遍接受不久,人們越來越認識到640KB的限制已成為大型程序的障礙,這時,Intel和Lotus,這兩家硬、軟體的傑出代表,聯手制定了一個由硬體和軟體相結合的方案,此方法使所有PC機存取640KB以上RAM成為可能。而Microsoft剛推出Windows不久,對內存空間的要求也很高,因此它也及時加入了該行列。

在1985年初,Lotus、Intel和Microsoft三家共同定義了LIM-EMS,即擴充內存規范,通常稱EMS為擴充內存。當時,EMS需要一個安裝在I/O槽口的內存擴充卡和一個稱為EMS的擴充內存管理程序方可使用。但是I/O插槽的地址線只有24位(ISA匯流排),這對於386以上檔次的32位機是不能適應的。所以,現在已很少使用內存擴充卡。現在微機中的擴充內存通常是用軟體如DOS中的EMM386把擴展內存模擬或擴充內存來使用。所以,擴充內存和擴展內存的區別並不在於其物理存儲器的位置,而在於使用什麼方法來讀寫它。下面將作進一步介紹。

前面已經說過擴充存儲器也可以由擴展存儲器模擬轉換而成。EMS的原理和XMS不同,它採用了頁幀方式。頁幀是在1MB空間中指定一塊64KB空間(通常在保留內存區內,但其物理存儲器來自擴展存儲器),分為4頁,每頁16KB。EMS存儲器也按16KB分頁,每次可交換4頁內容,以此方式可訪問全部EMS存儲器。符合EMS的驅動程序很多,常用的有EMM386.EXE、QEMM、TurboEMS、386MAX等。DOS和Windows中都提供了EMM386.EXE。

2.什麼是擴展內存?

我們知道,286有24位地址線,它可定址16MB的地址空間,而386有32位地址線,它可定址高達4GB的地址空間,為了區別起見,我們把1MB以上的地址空間稱為擴展內存XMS(eXtend memory)。

在386以上檔次的微機中,有兩種存儲器工作方式,一種稱為實地址方式或實方式,另一種稱為保護方式。在實方式下,物理地址仍使用20位,所以最大定址空間為1MB,以便與8086兼容。保護方式採用32位物理地址,定址范圍可達4GB。DOS系統在實方式下工作,它管理的內存空間仍為1MB,因此它不能直接使用擴展存儲器。為此,Lotus、Intel、AST及Microsoft公司建立了MS-DOS下擴展內存的使用標准,即擴展內存規范XMS。我們常在Config.sys文件中看到的Himem.sys就是管理擴展內存的驅動程序。

擴展內存管理規范的出現遲於擴充內存管理規范。

3.什麼是高端內存區?

在實方式下,內存單元的地址可記為:

段地址:段內偏移

通常用十六進制寫為XXXX:XXXX。實際的物理地址由段地址左移4位再和段內偏移相加而成。若地址各位均為1時,即為FFFF:FFFF。其實際物理地址為:FFF0+FFFF=10FFEF,約為1088KB(少16位元組),這已超過1MB范圍進入擴展內存了。這個進入擴展內存的區域約為64KB,是1MB以上空間的第一個64KB。我們把它稱為高端內存區HMA(High Memory Area)。HMA的物理存儲器是由擴展存儲器取得的。因此要使用HMA,必須要有物理的擴展存儲器存在。此外HMA的建立和使用還需要XMS驅動程序HIMEM.SYS的支持,因此只有裝入了HIMEM.SYS之後才能使用HMA。

4.什麼是上位內存?

為了解釋上位內存的概念,我們還得回過頭看看保留內存區。保留內存區是指640KB~1024KB(共384KB)區域。這部分區域在PC誕生之初就明確是保留給系統使用的,用戶程序無法插足。但這部分空間並沒有充分使用,因此大家都想對剩餘的部分打主意,分一塊地址空間(注意:是地址空間,而不是物理存儲器)來使用。於是就得到了又一塊內存區域UMB。

UMB(Upper Memory Blocks)稱為上位內存或上位內存塊。它是由擠占保留內存中剩餘未用的空間而產生的,它的物理存儲器仍然取自物理的擴展存儲器,它的管理驅動程序是EMS驅動程序。

5.什麼是SHADOW(影子)內存?

對於細心的讀者,可能還會發現一個問題:即是對於裝有1MB或1MB以上物理存儲器的機器,其640KB~1024KB這部分物理存儲器如何使用的問題。由於這部分地址空間已分配為系統使用,所以不能再重復使用。為了利用這部分物理存儲器,在某些386系統中,提供了一個重定位功能,即把這部分物理存儲器的地址重定位為1024KB~1408KB。這樣,這部分物理存儲器就變成了擴展存儲器,當然可以使用了。但這種重定位功能在當今高檔機器中不再使用,而把這部分物理存儲器保留作為Shadow存儲器。Shadow存儲器可以占據的地址空間與對應的ROM是相同的。Shadow由RAM組成,其速度大大高於ROM。當把ROM中的內容(各種BIOS程序)裝入相同地址的Shadow RAM中,就可以從RAM中訪問BIOS,而不必再訪問ROM。這樣將大大提高系統性能。因此在設置CMOS參數時,應將相應的Shadow區設為允許使用(Enabled)。

6、什麼是奇/偶校驗?

奇/偶校驗(ECC)是數據傳送時採用的一種校正數據錯誤的一種方式,分為奇校驗和偶校驗兩種。

如果是採用奇校驗,在傳送每一個位元組的時候另外附加一位作為校驗位,當實際數據中「1」的個數為偶數的時候,這個校驗位就是「1」,否則這個校驗位就是「0」,這樣就可以保證傳送數據滿足奇校驗的要求。在接收方收到數據時,將按照奇校驗的要求檢測數據中「1」的個數,如果是奇數,表示傳送正確,否則表示傳送錯誤。

同理偶校驗的過程和奇校驗的過程一樣,只是檢測數據中「1」的個數為偶數。

總 結

經過上面分析,內存儲器的劃分可歸納如下:

●基本內存 占據0~640KB地址空間。

●保留內存 占據640KB~1024KB地址空間。分配給顯示緩沖存儲器、各適配卡上的ROM和系統ROM BIOS,剩餘空間可作上位內存UMB。UMB的物理存儲器取自物理擴展存儲器。此范圍的物理RAM可作為Shadow RAM使用。

●上位內存(UMB) 利用保留內存中未分配使用的地址空間建立,其物理存儲器由物理擴展存儲器取得。UMB由EMS管理,其大小可由EMS驅動程序設定。

●高端內存(HMA) 擴展內存中的第一個64KB區域(1024KB~1088KB)。由HIMEM.SYS建立和管理。

●XMS內存 符合XMS規范管理的擴展內存區。其驅動程序為HIMEM.SYS。

●EMS內存 符合EMS規范管理的擴充內存區。其驅動程序為EMM386.EXE等。

10. 信息存儲技術的發展過程

人類記錄信息、存儲信息方法經歷了以下幾大技術:
1,結繩記事;
2,文字紙張;
3,磁記錄方式(磁鼓,磁帶,磁碟等) 當前比較成熟,
4,半導體電記錄(電路,電量或電容):ROM,RAM等;隨著半導體技術的提升而不斷提升、改進
5,光記錄(光碟,光運算器件) 光計算和光存儲也許會在不久的將來大力發展

熱點內容
日本免費雲伺服器色 發布:2025-04-05 04:58:52 瀏覽:864
linuxcpp 發布:2025-04-05 04:53:38 瀏覽:747
安卓字體哪個最好 發布:2025-04-05 04:46:37 瀏覽:649
什麼是hdb3碼編解碼 發布:2025-04-05 04:40:20 瀏覽:504
編譯原理運算符 發布:2025-04-05 04:37:50 瀏覽:520
如何用安卓手機玩ipad的賬號 發布:2025-04-05 04:17:42 瀏覽:935
vivo手機怎麼在桌面建文件夾 發布:2025-04-05 04:15:56 瀏覽:961
在線ftp網頁版軟體 發布:2025-04-05 04:15:02 瀏覽:624
android手機gps 發布:2025-04-05 04:14:59 瀏覽:446
頁數演算法 發布:2025-04-05 03:19:01 瀏覽:318