存儲晶元為長
A. 好消息:中企長江存儲128層快閃記憶體晶元量產出貨!正式打破韓企壟斷
我國晶元製造領域傳來了一個重大好消息。
我國晶元代工商「嘉合勁威」日前官宣,該司已經通過旗下品牌——阿斯加特發布新品AN4 PCle4.0 SSD,這款內存晶元的基於長江存儲128層技藝。7月29日當天,觀察者網聯系長江存儲代表人士確認了這個消息。 而這樣就意味著,長江存儲128層快閃記憶體晶元,順利實現量產並完成出貨,填補了我國高端存儲市場的空白。
一直以來,高端存儲晶元市場都是SK海力士、三星這2家韓國巨頭的天下。 當前市面上的存儲晶元主要分為DRAM和NAND兩大類,而在DRAM領域,三星和SK海力士就占據了超過70%的市場份額,NAND的市佔率也高達45%。
最新數據顯示,2021年1季度,三星一家企業就佔領了將近41%的內存晶元市場,SK海力士則分走了約29%的份額。 而在韓國幾乎壟斷了全球內存晶元市場之際,2020年10月,SK海力士還決定,斥資90億美元(摺合約582億元人民幣)買下美國巨頭英特爾的快閃記憶體(NAND)業務。
SK海力士此舉的意圖也很簡單,就是想擴大自身的內存晶元版圖,從而對三星世界第一的位置發起沖擊。 截至今年7月22日,已有新加坡、美國、韓國、巴西、英國等在內的7個國家和地區同意了SK海力士和英特爾的這筆生意,目前還剩下中國的監管機構沒有「點頭」。
要知道,靠著發展半導體產業,韓國的貿易有了突飛猛進的增長。 就在剛剛過去的6月,韓國貿易出口規模達到549億美元,同比大增了近40%,創下有史以來6月最高的出口增幅;而這個已是韓國連續8月實現出口增長。
其中,半導體在5-6月已經連續兩個月,實現100億美元以上的出口業績。 據韓國有關部門的數據,2021年上半年,該國在信息通信技術(ICT)領域突破了1030億美元(摺合約6657億元人民幣),為有史以來第二高的出口水平。
就6月的表現而言,韓國總計賣出了111.6億美元半導體,存儲晶元的出口佔比接近70%,約達75.4 億美元。 而中國還是韓國半導體的重要出口市場,6月自韓國手裡購買了近70億美元晶元(摺合約452億元人民幣),同比增幅超過37%,在我國自韓國進口的商品總額佔比約達75%。
雖然目前韓國沒有在晶元領域追加出口限制,我國還可以自韓國市場進口晶元,但是美國那邊卻不好說。 就在7月上旬,有美國官員發出呼籲,希望美國商務部將我國企業長江存儲列入觀察的「黑名單」中。隨後,在7月16日,長江存儲也對此事官方回應稱,該司的晶元產品均應用在民用領域,同時嚴格遵守WTO等國際組織的貿易規則,美國方面的說法失實。
要知道,長江存儲於2020年4月成功研發的這款128層存儲晶元,具備業界最高的IO速度,工藝水平在全球領先。 而據有關機構公布的數據,2020年中國的存儲晶元規模已經達到183億美元,預計到2024年將迎來500億美元的里程碑。
文 |廖力思 題 | 曾藝 圖 |盧文祥 審 |呂佳敏
B. 合肥長鑫和長江存儲兩個企業的存儲晶元和未來發展哪個更有潛力
長鑫是內存,長江是快閃記憶體。內存斷電數據丟失,快閃記憶體斷電數據依然在,技術層面,快閃記憶體技術難度更高!另外長鑫是買的國外底層技術,然後升級優化發展,發展有一定局限性,且與世界一流水平有2-3代的差距!而長存完全自主研發,技術幾乎達到世界一流水平。從市場發展來看,內存技術有天花板,需求市場幾乎停止增長,而快閃記憶體技術革新空間很大,市場需求每年更是以30%的增長速度擴張。綜合來看長江存儲發展前景更大!
兩家企業之間內部高層人員同屬於紫光派系。因此在產業結構分工上是協調合作方式。合肥長鑫主攻可讀存儲;長江存儲以研發可寫存儲。
長江存儲屬於國家隊,合肥長鑫地地道道屬省級隊。由此看來,長江存儲比合肥長鑫起步高。不過合肥長鑫率先將上市產品對標到世界同等級別,而長江存儲還需時日。
另外,眾所周知,玩存儲晶圓是個燒錢項目,風險變數極大,所以這些企業背靠的是有實力的大級別體量玩家。長江存儲背靠武漢,是國家傾盡全力打造的存儲之都;合肥近幾年靠集成晶元(京東方)實實在在是掙到百千億的,夾持國家科學中心名頭不可小覷!
綜敘,潛力誰大不好說,一個是小獅子,逐漸霸氣側漏想挑戰王位;一個是小老虎,虎虎生威欲佔山為王!
沖出重圍千億起步,強敵環伺巨頭統治。
存儲晶元的前景如何展望?
合肥長鑫,成立於2016年5月, 專注於DRAM領域 ,整體投資預計超過1500億元。目前一期已投入超過220億元,19nm8GbDDR4已實現量產,產能已達到2萬片/月,預計2020年一季度末達4萬片/月,三期完成後產能為36萬片/月, 有望成為全球第四大DRAM廠商。
長江存儲,成立於2016年7月, 專注於3DNANDFlash領域 ,整體投資額240億美元,目前64層產品已量產。根據集邦咨詢數據,2019年Q4長江存儲產能在2萬片/月,到2020年底有望擴產至7萬片/月,2023年目標擴產至30萬片/月產能, 有望成為全球第三大NANDFlash廠商。
最近利基型內存(Specialty DRAM)的價格大漲,我們今天就來聊聊 DRAM 是什麼?
Dynamic Random Access Memory,縮寫DRAM。動態隨機存取存儲器,作用原理是利用電容內存儲電荷的多寡,來代表一個二進制比特是1還是0。這一段聽不懂,聽不懂沒關系,你只需要知道,它運算速度快、常應用於系統硬體的運行內存,計算機、手機中得有它,你可能沒聽說過DRAM,但你一定知道內存條, 沒錯,DRAM的最常見出現形式就是內存條。
近幾年的全球DRAM市場,呈現巨頭壟斷不變,市場規模多變的局面。
全球DRAM生產巨頭是三星、SK海力士和美光,分別占據了41.3%、28.2%和25%的市場份額。
2019年市場銷售額為620億美元,同比下降了37%。其中美國佔比39%排名第一,中國佔比34%排名第二,中美是全球DRAM的主要消費市場。細分市場,手機/移動端佔比40%,伺服器佔比34%。
總結來說,巨頭壟斷,使得中國企業沒有議價權,DRAM晶元受外部制約嚴重。 當前手機和移動設備是最大的應用領域,但未來隨著數據向雲端轉移,市場會逐步向伺服器傾斜。
未來,由於DRAM的技術路徑發展沒有發生明顯變化,微縮製程來提高存儲密度。那麼在進入20nm的存儲製程工藝後,製造難度越來越高,廠商對工藝的定義已不再是具體線寬,而是要在具體製程范圍內提升技術,提高存儲密度。
當前供需狀況,由於疫情在韓、美兩國發展速度超過預期,國內DRAM企業發展得到有利發展。
合肥長鑫、長江存儲 兩家都是好公司,都在各自的賽道中沖刺,希望他們能夠在未來打破寡頭壟斷的格局。
看哪家產品已經銷售了,其他吹得再好都是假的
目前看合肥長鑫優勢明顯
合肥長鑫和長江存儲兩個企業的存儲晶元和未來發展哪個更有潛力?快閃記憶體也好內存也罷都是國內相當薄弱的環節,都是要在國外壟斷企業口裡奪食,如果發展得好都是相當有潛力的企業。只是對於市場應用的廣度而言,合肥長鑫的內存可能相對來說更有潛力一些。
這兩家企業一家合肥長鑫以DRAM為主要的專注領域,長江存儲以NAND FLAH領域,而且投資都相當巨大,都是一千億元以上的投資。長江存儲除了企業投資之外,還有湖北地方產業基金,另外還有國家集成電路產業投資基金的介入,顯得更為有氣勢。而合肥長鑫主要以合肥地方投資為主,從投資來看看似長江存儲更有力度更有潛力一些。
不管時快閃記憶體還是內存,目前都被美國、韓國、日本等國外的幾家主要企業所壟斷,價格的漲跌幾乎都已經被操縱,國內企業已經吃過不少這方面的苦。DRAM領域的三星、海力士、鎂光,NAND領域有三星、東芝、新帝、海力士、鎂光、英特爾等,包括其他晶元一起,國內企業每一年花在這上面購買資金高達3000多億美金,並且一直往上攀升。
這兩家企業攜裹著大量投資進入該領域,但短時間之內要改變這種態勢還很難,一個是技術實力落後,另一個是市場號召力極弱。目前與國外的技術距離差不多在三年左右,況且這兩家的良品率和產能還並不高沒有完全釋放,在市場應用上的差距就更為懸殊。
從市場應用上來看,各種電子產品特別是手機及移動產品將會蓬勃發展,內存的應用地方相當多,甚至不可缺少,這帶來極大的需求量。相對而言,快閃記憶體應用地方可能要稍稍窄小一點,但需求同樣龐大。
國外三星、海力士等處於極強的強勢地位,而合肥長鑫和長江存儲要想從他們嘴裡爭奪是相當不容易的。不過有國內這個龐大的市場作後盾,相信這兩家未來都有不錯的前景,一旦發展起來被卡脖子的狀況將會大為改觀。
更多分享,請關注《東風高揚》。
理論上說長江存儲潛力更大,技術水平距離三星更近。長鑫的話製程跟三星還有一些差距,另外gddr5和ddr5長鑫都還沒影。
市場來說長鑫的dram內存價值更大。
但是不論nand還是dram存儲市場都是需要巨額投入和多年堅持的,所以誰錢多誰潛力大。
合肥長鑫是國產晶元的代表企業,主要從事存儲晶元行業中DRAM的研發、生產和銷售。企業計劃總投資超過 2200 億元,目前已經建立了一支擁有自主研發實力、工作經驗豐富的成建制國際化團隊,員工總數超過 2700 人,核心技術人員超過 500。
長江存儲成立於2016年7月,總部位於武漢,是一家專注於3D NAND快閃記憶體設計製造一體化的IDM集成電路企業。目前全球員工已超 6000 餘人,其中資深研發工程師約 2200人,已宣布 128 層 TLC/QLC 兩款產品研發成功,且進入加速擴產期,目前產能約 7.5 萬片/月,擁有業界最高的IO速度,最高的存儲密度和最高的單顆容量。
存儲晶元行業屬於技術密集型產業,中國存儲晶元行業起步晚,缺乏技術經驗累積。中國本土製造商長江存儲、合肥長鑫仍在努力追趕。
誰先做出產品誰就有潛力,兩家現在主要方向也不一樣,一個nand一個dram,也得看技術和頂級玩家三星的差距
當然是長江存儲更有潛力,長江存儲有自主知識產權的3d堆疊工藝平台,是國家存儲產業基地,長鑫買的外國專利授權,發展受到外國技術限制。長江存儲可以依靠3d堆疊工藝平台輕松殺入dram領域,而長鑫卻沒有可能進入nand領域。
C. 手機存儲晶元壽命
如果說的是CPU、GPU這樣的晶元,壽命其實是非常長的,但它也不是一個可以永久工作的晶元,因為即使是在正常使用中,CPU中的電子通過動能不斷沖擊著電路中的金屬原子,這個過程中會導致其一小部分脫離,也就是常說的「電子遷移」。盡管很長一段時間來看這種影響很微小,但是隨著CPU工作時間的增長,電子遷移就會開始導致電路變形,發生短路漏電和干擾等現象,再接下來可能就會導致CPU運算出錯、功能異常進而徹底報銷。
至於電腦上的內存晶元(RAM),由於其電容存儲機制,只要是正常沒有缺陷的晶元,壽命非常長,要不然絕大多數內存條都是終身保,只要不是不當超頻,靜電損壞,人為破壞,正常的內存壽命幾乎不用擔心。
其實相比電腦各類晶元的壽命,我們更應該關心主板和顯卡上電容電感的壽命,電源的品質和整體散熱水平,這些往往才是影響電腦壽命的關鍵。
D. 存儲晶元的組成
存儲體由哪些組成
存儲體由許多的存儲單元組成,每個存儲單元裡面又包含若干個存儲元件,每個存儲元件可以存儲一位二進制數0/1。
存儲單元:
存儲單元表示存儲二進制代碼的容器,一個存儲單元可以存儲一連串的二進制代碼,這串二進制代碼被稱為一個存儲字,代碼的位數為存儲字長。
在存儲體中,存儲單元是有編號的,這些編號稱為存儲單元的地址號。而存儲單元地址的分配有兩種方式,分別是大端、大尾方式、小端、小尾方式。
存儲單元是按地址尋訪的,這些地址同樣都是二進制的形式。
MAR
MAR叫做存儲地址寄存器,保存的是存儲單元的地址,其位數反映了存儲單元的個數。
用個例子來說明下:
比如有32個存儲單元,而存儲單元的地址是用二進制來表示的,那麼5位二進制數就可以32個存儲單元。那麼,MAR的位數就是5位。
在實際運用中,我們 知道了MAR的位數,存儲單元的個數也可以知道了。
MDR
MDR表示存儲數據寄存器,其位數反映存儲字長。
MDR存放的是從存儲元件讀出,或者要寫入某存儲元件的數據(二進制數)。
如果MDR=16,,每個存儲單元進行訪問的時候,數據是16位,那麼存儲字長就是16位。
主存儲器和CPU的工作原理
在現代計算中,要想完成一個完整的讀取操作,CPU中的控制器要給主存發送一系列的控制信號(讀寫命令、地址解碼或者發送驅動信號等等)。
說明:
1.主存由半導體元件和電容器件組成。
2.驅動器、解碼器、讀寫電路均位於主存儲晶元中。
3.MAR、MDR位於CPU的內部晶元中
4.存儲晶元和CPU晶元通過系統匯流排(數據匯流排、系統匯流排)連接。
E. 存儲器晶元的容量為32KB,晶元的地址線有多少條 很急跪求!!!!!
1.存儲晶元容量與晶元數據線、地址線根數都有關系!
2.若晶元數據線8根,即每個存儲單元容量1B,則32KB容量,需要32K存儲單元,對應地址線要15根。
3.若晶元數據線16根,即每個存儲單元容量2B,則32KB容量,需要16K存儲單元,對應地址線要14根。
4.存儲容量=2的N次方*M/8
N:地址線根數
M:數據線根數
F. 選用2764 EPROM 存儲晶元,設計一個64KB的程序存儲器,寫出設計步驟…
4.2參見p.106-107
匯流排操作指的是發生在匯流排上的某些特定操作,匯流排周期指的是完成一次特定匯流排操作所需的時間。對8088而言其典型的匯流排周期由 4個T狀態組成。PC/XT所採用的時鍾頻率為4.77MHz,每個T狀態的持續時間為210ns。如果CLK引腳接5MHz的時鍾信號,那麼每個T狀態的持續時間為200ns。
4.4解答:
當8088進行讀寫存儲器或I/O介面時,如果存儲器或I/O介面無法滿足CPU的讀寫時序(來不及提供或讀取數據時),需要CPU插入等待狀態TW。(在T3前沿檢測Ready信號,若無效則插入TW 。)
具體在讀寫匯流排周期的T3和T4之間插入TW。
4.6參見p.99,p.110
8088的某些輸出線有三種狀態:高電平、低電平、懸空(高阻態),稱為三態能力。在高阻狀態,CPU放棄其了對該引腳的控制權,由連接它的設備接管。
具有三態能力的引腳有:AD7~AD0,A15~A8,A19/S6~A16/S3,ALE,IO/M*,WR*,RD*,DEN*,DT/R*。
4.11
匯流排周期 IO/M* WR* RD*
存儲器讀 低 高 低
存儲器寫 低 低 高
I/O讀 高 高 低
I/O寫 高 低 高
4.12 答:
取該指令時引發存儲器讀匯流排操作。執行該指令時引發I/O讀匯流排操作。(時序圖略)
4.13 8088系統最小組態下,對指令ADD [2000H],AX (長度3B)。
答:取該指令時需要3個匯流排周期,均為存儲器讀周期。
執行該指令時需要4個匯流排周期,2個為存儲器讀匯流排周期(讀出字操作數參與運算),2個為存儲器寫匯流排周期(保存16位運算結果)。
4.15 參見p.106圖
74LS373 的G為電平鎖存引腳,控制選通且轉為無效時鎖存數據。
OE* 輸出允許引腳,信號來自ALE。
4.16 參見p.106圖
數據收發器74LS245 是8位雙向緩沖器,G*控制端為低電平有效,可傳輸數據;DIR控制導通方向:DIR=1,A→B;DIR=0,A←B。
4.17 參見p.111-112
歸納為:1、8086數據匯流排變為16位,數據地址線復用為AD15~AD0。
2、8086指令隊列程度變為6位元組長,當有2個位元組空才取下一指令。
3、8088引腳IO/M* ,8086變為M/IO*;
4、引腳SS0* 變為BHE*/S7,BHE* 的作用是使D15~D8有效。
5、8086存儲器組織為奇偶分塊,偶地址取字只要讀1次,奇地址取字需要讀兩次。
6、I/O埠大都採用偶地址,目的是引導8位數據到低8位匯流排AD7~AD0上,以提高效率。
=========================
5.1
Cache、主存和輔存的作用——參見 p.120~121
虛擬存儲器——參見p.121
在CPU看來,訪問主存和訪問輔存有什麼不同?
訪問主存:通過存儲器訪問機器指令,按字隨機訪問。
訪問輔存:通過操作系統,按塊順序訪問。
5.2 在半導體存儲器中,RAM指的是 隨機存取存儲器 ,它可讀可寫,但斷電後信息一般會 丟失 ;而ROM指的是 只讀存儲器 ,正常工作時只能從中 讀取 信息,但斷電後信息 不會丟失 。以EPROM晶元2764為例,其存儲容量為8K×8位,共有 8 條數據線和 13 條地址線。用它組成64KB的ROM存儲區共需 8 片2764晶元。
5.4 一個容量為4K×4位的假想RAM存儲晶元,他應該有多少根地址線引腳和多少根數據線引腳?如果讓你來進行設計,那麼它還需要哪些控制引腳?這些引腳分別起什麼樣的控製作用?
解答:
4K×4的晶元應該有12根地址線引腳和4根數據線引腳。
控制引腳應該有:
讀取信號OE*:有效時,表示讀取存儲單元的數據
寫入信號WE*:有效時,表示將數據寫入存儲單元
片選信號CS*:有效時,表示選中該晶元,可以進行讀寫操作。
5.7 什麼是存儲晶元的位擴充和地址擴充?採用靜態RAM的晶元2114(1K*4位)或動態RAM的晶元4116(16K*1位)來組成32KB的RAM存儲區,請問各需要多少晶元?在位方向和地址方向各需要進行什麼樣的擴充?
解答:(參見p.140) 使用多個晶元來擴充存儲數據位的寬度,稱為位擴充。
採用多個晶元在地址方向上進行擴充,稱為地址擴充或字擴充。
用SRAM 2114組成32KBRAM存儲區:2片為一組,得1KB,所以組成32KB就要32組,共需要64片SRAM 2114。
用DRAM 4116組成32KBRAM存儲區:8片為一組,得16KB,所以組成32KB只要2組,共需要16片DRAM 4116。
機床作為機械製造業的重要基礎裝備,它的發展一直引起人們的關注,由於計算機技術的興起,促使機床的控制信息出現了質的突破,導致了應用數字化技術進行柔性自動化控制的新一代機床-數控機床的誕生和發展。計算機的出現和應用,為人類提供了實現機械加工工藝過程自動化的理想手段。隨著計算機的發展,數控機床也得到迅速的發展和廣泛的應用,同時使人們對傳統的機床傳動及結構的概念發生了根本的轉變。數控機床以其優異的性能和精度、靈捷而多樣化的功能引起世人矚目,並開創機械產品向機電一體化發展的先河。 數控機床是以數字化的信息實現機床控制的機電一體化產品,它把刀具和工件之間的相對位置,機床電機的啟動和停止,主軸變速,工件松開和夾緊,刀具的選擇,冷卻泵的起停等各種操作和順序動作等信息用代碼化的數字記錄在控制介質上,然後將數字信息送入數控裝置或計算機,經過解碼,運算,發出各種指令控制機床伺服系統或其它的執行元件,加工出所需的工件。 數控機床與普通機床相比,其主要有以下的優點: 1. 適應性強,適合加工單件或小批量的復雜工件; 在數控機床上改變加工工件時,只需重新編制新工件的加工程序,就能實現新工件加工。 2. 加工精度高; 3. 生產效率高; 4. 減輕勞動強度,改善勞動條件; 5. 良好的經濟效益; 6. 有利於生產管理的現代化。 數控機床已成為我國市場需求的主流產品,需求量逐年激增。我國數控機機床近幾年在產業化和產品開發上取得了明顯的進步,特別是在機床的高速化、多軸化、復合化、精密化方面進步很大。但是,國產數控機床與先進國家的同類產品相比,還存在差距,還不能滿足國家建設的需要。 我國是一個機床大國,有三百多萬台普通機床。但機床的素質差,性能落後,單台機床的平均產值只有先進工業國家的1/10左右,差距太大,急待改造。 舊機床的數控化改造,顧名思義就是在普通機床上增加微機控制裝置,使其具有一定的自動化能力,以實現預定的加工工藝目標。 隨著數控機床越來越多的普及應用,數控機床的技術經濟效益為大家所理解。在國內工廠的技術改造中,機床的微機數控化改造已成為重要方面。許多工廠一面購置數控機床一面利用數控、數顯、PC技術改造普通機床,並取得了良好的經濟效益。我國經濟資源有限,國家大,機床需要量大,因此不可能拿出相當大的資金去購買新型的數控機床,而我國的舊機床很多,用經濟型數控系統改造普通機床,在投資少的情況下,使其既能滿足加工的需要,又能提高機床的自動化程度,比較符合我國的國情。 1984年,我國開始生產經濟型數控系統,並用於改造舊機床。到目前為止,已有很多廠家生產經濟型數控系統。可以預料,今後,機床的經濟型數控化改造將迅速發展和普及。所以說,本畢業設計實例具有典型性和實用性。 第二章 總體方案的設計 2.1 設計任務 本設計任務是對CA6140普通車床進行數控改造。利用微機對縱、橫向進給系統進行開環控制,縱向(Z向)脈沖當量為0.01mm/脈沖,橫向(X向)脈沖當量為0.005mm/脈沖,驅動元件採用步進電機,傳動系統採用滾珠絲杠副,刀架採用自動轉位刀架。 2.2 總體方案的論證 對於普通機床的經濟型數控改造,在確定總體設計方案時,應考慮在滿足設計要求的前提下,對機床的改動應盡可能少,以降低成本。 (1)數控系統運動方式的確定 數控系統按運動方式可分為點位控制系統、點位直線控制系統、連續控制系統。由於要求CA6140車床加工復雜輪廓零件,所以本微機數控系統採用兩軸聯動連續控制系統。 (2)伺服進給系統的改造設計 數控機床的伺服進給系統有開環、半閉環和閉環之分。 因為開環控制具有結構簡單、設計製造容易、控制精度較好、容易調試、價格便宜、使用維修方便等優點。所以,本設計決定採用開環控制系統。 (3)數控系統的硬體電路設計 任何一個數控系統都由硬體和軟體兩部分組成。硬體是數控系統的基礎,性能的好壞直接影響整體數控系統的工作性能。有了硬體,軟體才能有效地運行。 在設計的數控裝置中,CPU的選擇是關鍵,選擇CPU應考慮以下要素: 1. 時鍾頻率和字長與被控對象的運動速度和精度密切相關; 2. 可擴展存儲器的容量與數控功能的強弱相關; 3. I/O口擴展的能力與對外設控制的能力相關。 除此之外,還應根據數控系統的應用場合、控制對象以及各種性能、參數要求等,綜合起來考慮以確定CPU。在我國,普通機床數控改造方面應用較普遍的是Z80CPU和MCS-51系列單片機,主要是因為它們的配套晶元便宜,普及性、通用性強,製造和維修方便,完全能滿足經濟型數控機床的改造需要。本設計中是以MCS-51系列單片機,51系列相對48系列指令更豐富,相對96系列價格更便宜,51系列中,是無ROM的8051,8751是用EPROM代替ROM的8051。目前,工控機中應用最多的是8031單片機。本設計以8031晶元為核心,增加存儲器擴展電路、介面和面板操作開關組成的控制系統。 2.3 總體方案的確定 經總體設計方案的論證後,確定的CA6140車床經濟型數控改造示意圖如圖所示。CA6140車床的主軸轉速部分保留原機床的功能,即手動變速。車床的縱向(Z軸)和橫向(X軸)進給運動採用步進電機驅動。由8031單片機組成微機作為數控裝置的核心,由I/O介面、環形分配器與功率放大器一起控制步進電機轉動,經齒輪減速後帶動滾珠絲杠轉動,從而實現車床的縱向、橫向進給運動。刀架改成由微機控制的經電機驅動的自動控制的自動轉位刀架。為保持切削螺紋的功能,必須安裝主軸脈沖發生器,為此採用主軸靠同步齒形帶使脈沖發生器同步旋轉,發出兩路信號:每轉發出的脈沖個數和一個同步信號,經隔離電路以及I/O介面送給微機。如圖2-1所示: 第三章 微機數控系統硬體電路設計 3.1微機數控系統硬體電路總體方案設計 本系統選用8031CPU作為數控系統的中央處理機。外接一片2764EPROM,作為監控程序的程序存儲器和存放常用零件的加工程序。再選用一片6264RAM用於存放需要隨機修改的零件程序、工作參數。採用解碼法對擴展晶元進行定址,採用74LS138解碼器完成此功能。8279作為系統的輸入輸出口擴展,分別接鍵盤的輸入、輸出顯示,8255接步進電機的環形分配器,分別並行控制X軸和Z軸的步進電機。另外,還要考慮機床與單片機之間的光電隔離,功率放大電路等。其硬體框圖如圖3-1所示: 圖3-2 8031晶元內部結構圖 各引腳功能簡要介紹如下: ⒈ 源引腳 VSS:電源接地端。 VCC:+5V電源端。 ⒉ 輸入/輸出(I/O)口線 8031單片機有P0、P1、P2、P3 4個埠,每個埠8根I/O線。當系統擴展外部存儲器時,P0口用來輸出低8位並行數據,P2口用來輸出高8位地址,P3口除可作為一個8位準雙向並行口外,還具有第二功能,各引腳第二功能定義如下: P3.0 RXD:串列數據輸入端。 P3.1 TXD:串列數據輸出端 P3.2 INT0:外部中斷0請求信號輸入端。 P3.3 INT1:外部中斷1請求信號輸入端。 P3.4 T0:定時器/計數器0外部輸入端 P3.5 T1:定時器/計數器1外部輸入端 P3.6 WR:外部數據存儲器寫選通。 P3.7 RD:外部數據存儲器讀選通。 在進行第二功能操作前,對第二功能的輸出鎖存器必須由程序置1。 ⒊ 信號控制線 RST/VPD:RST為復位信號線輸入引腳,在時鍾電路工作以後,該引腳上出現兩個機器周期以上的高電平,完成一次復位操作。 8031單片機採用兩種復位方式:一種是加電自動復位,另一種為開關復位。 ALE/PROG:ALE是地址鎖存允許信號。它的作用是把CPU從P0口分時送出的低8位地址鎖存在一個外加的鎖存器中。 :外部程序存儲器讀選通信號。當其為低電平時有效。
VPP:當EA為高電平且PC值小於0FFFH時CPU執行內部程序存儲器中的程序。當EA為低電平時,CPU僅執行外部程序存儲器中的程序。 XTAL1:震盪器的反相放大器輸入,使用外部震盪器時必須接地; XTAL2:震盪器的反相放大器輸出,使用外部震盪器時,接收外圍震盪信號; (2)片外三匯流排結構 單片機在實際應用中,常常要擴展外部存儲器、I/O口等。單片機的引腳,除了電源、復位、時鍾輸入以及用戶I/O口外,其餘的引腳都是為了實現系統擴展而設置的,這些引腳構成了三匯流排形式: ⒈ 地址匯流排AB 地址匯流排寬度為16位。因此,外部存儲器直接定址范圍為64KB。由P0口經地址鎖存器提供16位地址匯流排的低8位地址(A7~A0),P2口直接提供高8位地址(A15~A8)。 ⒉ 數據匯流排DB 數據匯流排寬度為8位,由P0口提供。 ⒊ 控制匯流排CB 控制匯流排由第二功能狀態下的P3口和4根獨立的控制線RST、EA、ALE和PSEN組成。其引腳圖如圖3-3所示: 3.1.2 8255A可編程並行I/O口擴展晶元 8255A可編程並行I/O口擴展晶元可以直接與MCS系列單片機系統匯流排連接,它具有三個8位的並行I/O口,具有三種工作方式,通過編程能夠方便地採用無條件傳送、查詢傳送或中斷傳送方式完成CPU與外圍設備之間的信息交換。8255A的結構及引腳功能: 1、 8255A的結構 8255A的內部結構如圖3-4所示。其中包括三個8位並行數據I/O埠,二個工作方式控制電路,一個讀/寫控制邏輯電路和一個8位數據匯流排緩沖器。各部分功能介紹如下: (1) 三個8位並行I/O埠A、B、C A口:具有一個8位數據輸出鎖存/緩沖器和一個8位數據輸入鎖存器。可編程為8位輸入、或8位輸出、或8位雙向寄存器。B口:具有一個8位數據輸出鎖存/緩沖器和一個8位輸入或輸出寄存器,但不能雙向輸入/輸出。C口:具有一個8位數據輸出鎖存/緩沖器和一個8位數據輸入緩沖器,C口可分作兩個4位口,用於輸入或輸出,也可作為A口和B口選通方式工作時的狀態控制信號。 (2) 工作方式控制電路 A、B兩組控制電路把三個埠分成A、B兩組,A組控制A口各位和C口高四位,B組控制B口各位和C口低四位。兩組控制電路各有一個控制命令寄存器,用來接收由CPU寫入的控制字,以決定兩組埠的工作方式。也可根據控制字的要求對C口按位清「0」或置「1」。 (3) 讀/寫控制邏輯電路 它接收來自CPU的地址信號及一些控制信號,控制各個口的工作狀態。 (4) 數據匯流排緩沖器 它是一個三態雙向緩沖器,用於和系統的數據匯流排直接相連,以實現CPU和8255A之間信息的傳送。
G. SSD 固態硬碟的FLASH 存儲晶元
NAND Flash快閃記憶體晶元又分為SLC(單層單元)和MLC(多層單元)NAND快閃記憶體。
SLC全稱是單層式儲存 (Single Level Cell),因為結構簡單,在寫入數據時電壓變化的區間小,所以壽命較長,傳統的SLC NAND快閃記憶體可以經受10萬次的讀寫。而且因為一組電壓即可驅動,所以其速度表現更好,目前很多高端固態硬碟都是都採用該類型的Flash快閃記憶體晶元。
MLC全稱是多層式儲存(Multi Leveled Cell),它採用較高的電壓驅動,通過不同級別的電壓在一個塊中記錄兩組位信息,這樣就可以將原本SLC的記錄密度理論提升一倍。作為目前在固態硬碟中應用最為廣泛的MLC NAND快閃記憶體,其最大的特點就是以更高的存儲密度換取更低的存儲成本,從而可以獲得進入更多終端領域的契機。不過,MLC的缺點也很明顯,其寫入壽命較短,讀寫方面的能力也比SLC低,官方給出的可擦寫次數僅為1萬次。
Goldendisk 雲存科技的固態採用循擦寫功能,演算法加密功能,一鍵銷除功能,非法斷電保護功能,防震功能,防寫功能為硬碟數據提供更好的資料保護功能。
Smartcom 睿通的產品採用平均抹寫或稱損耗均衡演算法(wear leaving)可延長FLASH 的使用壽命。 固態硬碟存儲晶元品牌,型號一覽表 三星 S3C49RBX01-YH80、S3C29RBB01-YK40 東芝 TC58NCF602GAT、TC58NCF618GBT、T6UG1XBG Intel JS29F08G08CANB2、JS29F16G08CANC1 Mircon MT29F8G08ABABAWP:B、MT29F16G08ABACAWP
H. 存儲位元組和存儲晶元的概念
存儲位元組是以位元組為單位將信息存儲到一個地方。
那存儲晶元就是存儲信息的地方了
換句話說,存儲晶元是容器,它裝的是位元組或者是其他的一些單位的信息
I. 存儲器晶元的「256k x 16位」是什麼意思這是怎麼命名的
256K是256KB(256千位元組)容量,16位是數據傳輸位寬(既16個數據同時傳輸)。另外對於存儲器技術參數還有頻率,也是相當重要,它決定多少時間傳輸一次(比如問起的256k x 16位,那一次就是16位)數據。
一般存儲器的命名是以存儲器的容量x存儲器位寬(數據線根數)的規則命名。
這樣根據命名就可以看出存儲器的總容量,以及位寬(數據線根數)是多少。位寬越大,每次處理器能一次讀取的數據就越多,這樣訪問速度就越快。
256kx16位,就是存儲器總的容量是256k,也就是256x,256K是存儲器容量。
16位是字長位寬,位寬越大,CPU一次讀取的數據量就越多。
存儲晶元是按模塊存儲的,分多少塊,每塊多少大容量,所說的 256K是每塊存256位元組,那16位是匯流排數理。
(9)存儲晶元為長擴展閱讀
存儲器容量計算公式:
按位計算 (b) : 存儲容量 = 存儲單元個數 x 存儲字長;
按位元組計算(B): 存儲容量 = 存儲單元個數 x 存儲字長 / 8。
存儲單元 :CPU訪問存儲器的最小單位,每個存儲單元都有一個地址。
存儲字長 :存儲器中一個存儲單元(存儲地址)所存儲的二進制代碼的位數。
例題:一個存儲器有16根地址線,8根數據線,求此存儲器存儲容量?
答:按位求取 2^16 x 8位 =64K x 8位;
按位元組求取 2^16 x 8位/8 = 64K x B = 64kB。
分析:存儲單元與地址線的關系: 我們知道CPU訪問存儲器的最小單位是存儲單元且每個存儲單元都有一個地址,1 根地址線可以查找 2 個地址既2個存儲單元,16根地址線則可以查找 2^16個存儲單元。
存儲字長與數據線的關系 : 我們知道存儲字長是指存儲器中一個存儲單元(存儲地址)所存儲的二進制代碼的位數,而二進制代碼的位數是由數據線的根數決定的,也就是說: 存儲字長 = 數據線根數位元組(B)與位(b)的關系 : 計算機里規定 1Byte = 8bit 。
所以存儲器容量就有;兩種表示方法 64K x 8位 = 64KB。我們常見的內存容量表示方法 是以位元組為單位的。例如 1GB ,4MB, 512KB
1GB = 10^3MB =10^6KB = 10^9B = 10^9 x 8b 。