當前位置:首頁 » 存儲配置 » 信息存儲的發展

信息存儲的發展

發布時間: 2022-08-22 14:15:32

① 人類信息儲存工具的發展歷程

電腦的發展歷史
1.
電腦的英文名稱為 Computer,直譯的意思是計算機.
電腦由早期的機械式電腦發展到現在所使用的個人電腦,經過了一段相當長的時間,最早的計算機得追溯到西元 1942年由法國數學加巴斯卡所發明的巴斯卡機,這台機器是由許多的齒輪與杠桿所組成的.
一般我們對電腦世代的分類是以製造電腦所使用的元件不同來劃分,共分為四個世代:
第一代(西元1946年~西元1958年):使用真空管製造.
第二代(西元1959年~西元1964年):使用電晶體製造.

第三代(西元1965年~西元1970年):使用積體電路製造.

第四代(西元1970年~) :使用超大型積體電路製造.
第一代電腦:真空管時代:使用真空管為材料以打孔卡片作為外部儲存媒體以磁鼓作為內部儲存媒體程式語言為機器語言及組合語言
第二代電腦:電晶體時代使用電晶體為材料開始使用磁帶磁碟的發明以磁蕊作為內部儲存媒體硬體的模組化高階語言的出現
第三代電腦:積體電路的時代使用積體電路向上相容的概念作業系統的出現 軟體的快速發展 迷你電腦的出現
第四代電腦:超大型積體電路的時代微處理機的出現以半導體作為內部儲存媒體微電腦的流行套裝

② 信息儲存技術的發展過程

,信息儲存技術的發展過程:
1,原始社會,人們用結繩記事,或者把各種信息雕刻在石頭等物體上面
2,在奴隸社會,人們在石頭、陶器、木板、竹片等物體上面雕刻信息,這一時期有了最原始的文字,人們可以在皮革和織物、木板、竹片等上面書寫信息。
3,再後來,發明了紙張,人們用紙張來儲存信息。
4,到了近代,人們發明了照相機,於是可以用膠片來存儲信息。同一時期,人們發現了電磁感應現象,開始利用物體電磁感應的規律製造出象磁帶、唱片等來存儲信息。並且在後來進一步發展了這一技術。象現在的大容量硬碟、快閃記憶體晶元、優盤等都是基於這一原理。
5,在20世紀70年代,人們發現了使用激光來存儲信息的方式,這就是我們今天常見到的各種光碟了。


信息儲存技術:是將經過加工整理序化後的信息按照一定的格式和順序存儲在特定的載體中的一種信息活動。其目的是為了便於信息管理者和信息用戶快速地、准確地識別、定位和檢索信息。

③ 信息存儲技術的發展過程

人類記錄信息、存儲信息方法經歷了以下幾大技術:
1,結繩記事;
2,文字紙張;
3,磁記錄方式(磁鼓,磁帶,磁碟等) 當前比較成熟,
4,半導體電記錄(電路,電量或電容):ROM,RAM等;隨著半導體技術的提升而不斷提升、改進
5,光記錄(光碟,光運算器件) 光計算和光存儲也許會在不久的將來大力發展

④ 海量信息存儲的發展歷程

我也是她班的~~~~檔案的。。。。

在各種應用系統的存儲設備上,信息正以數據存儲的方式高速增長著,不斷推進著全球信息化的進程。隨之而來的是海量信息存儲的需求不斷增加。雖然文件伺服器和資料庫伺服器的存儲容量在不斷擴充,可還是會碰到空間在成倍增長,用戶仍會抱怨容量不足的情況,也正是用戶對存儲空間需求的不斷增加,推動海量信息存儲技術的不斷變化。
海量信息存儲早期採用大型伺服器存儲,基本都是以伺服器為中心的處理模式,使用直連存儲(Direct Attached Storage),存儲設備(包括磁碟陣列,磁帶庫,光碟庫等)作為伺服器的外設使用。隨著網路技術的發展,伺服器之間交換數據或向磁碟庫等存儲設備備份時,都是通過區域網進行,這是主要應用網路附加存儲(Network Attached Storage)技術來實現網路存儲,但這將佔用大量的網路開銷,嚴重影響網路的整體性能。為了能夠共享打容量,高速度存儲設備,並且不佔用區域網資源的海量信息傳輸和備份,就需要專用存儲網路來實現。

⑤ 信息儲存技術的發展歷史是什麼

計算機晶元儲存發展史進入1984年後,IBMPC/AT(AdvancedTechnology,先進技術)規格中關於硬碟子系統的部分得到了全面更新。程序控制代碼開始被內建於主板搭載的BIOS中,從而不再依靠介面控制卡上所帶的ROM晶元了。系統開始支持新增加的高位IRQ中斷號,廢除了對DMA通道的佔用,並更改了硬碟介面所使用的I/O地址。AT規格中關於硬碟介面規定如下:使用IRQ14。使用I/O介面地址1F0-1F8。不再佔用DMA通道。使用主板BIOS中內建的程序代碼對硬碟介面進行控制。使用DOS2.0版本以上的操作系統。AT兼容機上的硬體設置信息都被保存在一塊CMOS晶元上,所記錄的內容受一塊小型電池的供電來維持。因此即便機箱的電源被切斷,所有設置仍舊會被保存下來。這一技術使PC機的用戶不必再受一大堆跳線和撥動開關的困擾(在早期的電腦上,每件設備所佔用的系統資源都是由用戶手動更改跳線或撥動開關來進行分配的),且CMOS中所記錄的內容可以運行一個簡單的程序方便地進行更改,此舉可算是提高電腦易用性方面的一大進步。原始的AT規格界定了從10MB到112MB共計14種容量的硬碟,在使用那些不合規格的硬碟時,仍需要在介面卡上搭載ROM晶元或是在系統啟動時載入專用的設備驅動程序。在DOS4.0之前的操作系統不支持32MB以上的分區,哪怕是使用容量在100MB以上的硬碟時,也要把它切割成小區方能使用,這是因為「系統中的扇區總數不能超過16位(65,536)」這一傳統限制。想使用大於32MB的分區,就必須使用特殊的分區工具,例如Ontrack』sDiskManager(即便是在今天,新版本DiskManager仍舊受到用戶們的歡迎,它可是解決老主板不支持大容量硬碟的制勝法寶啊),當時有許多硬碟廠家都將DiskManager與自家的產品捆綁銷售。但不幸的是,DiskManager與其他許多磁碟工具都發生了兼容性問題,因為在大多數工具軟體下,用DiskManager所分的區都會被識別成了非DOS(Non-DOS)分區。因此,許多用戶被迫選擇了分割多個32MB以下小分區的辦法來使用大容量硬碟,但這種辦法也有局限性,因為DOS3.3之前的版本根本就不支持擴展分區這一概念……今天的用戶當然不必理會這些限制,因為AT兼容機所支持的硬碟種類已增加為40多種,並且大多數BIOS都會提供一個可由用戶自由設定各種硬碟參數的選項。您只要打開WINDOWS操作系統中的硬碟屬性,就能看到「GENERICIDEDISKTYPE46/47」等字樣(具體顯示46還是47與系統設置有關,在BIOS里把硬碟類型設為USER時顯示為TYPE46,而設為AUTO時系統屬性里則顯示TYPE47),這就是您的硬碟所屬的「固有的硬碟類型」。當然,在WINDOWS環境下,用戶根本用不著在意硬碟到底被設成了什麼類型,因為隨著操作系統本身的發展進步,WINDOWS本身不需要讀取這一參數就能正確地讀寫硬碟了。不過,原始的AT規格中的部分條文在今天依舊是PC機的桎梏,例如一台PC機最多隻能連接2個硬碟、BIOS/操作系統只能識別1024柱面、16磁頭和63扇區/磁軌的限制等等(當然,這些限制現在都已被克服了)。人們已經採用了多種不同的辦法來將那些「不合規格的」物理參數與系統所能支持的邏輯參數之間進行互相轉換。

⑥ 古代 近代 現代的存儲信息方法有哪些

古代,將信息以書寫、印刷等形式記錄在石頭~竹簡~帛~紙上,形成書。
近代,以書寫、印刷等形式記錄在紙上。照相錄像技術發明後,就可以記錄畫面信息了。
現代,以列印和數據硬碟或雲服務存儲為主。

(6)信息存儲的發展擴展閱讀:

存儲介質

紙張

優點:存量大,體積小,便宜,永久保存性好,並有不易塗改性。存數字、文字和圖像一樣容易。

缺點:傳送信息慢,檢索起來不方便

膠卷

優點:存儲密度大。查詢容易

缺點:閱讀時必須通過介面設備,不方便,價格昂貴。

計算機

優點:存取速度極快,存儲的數據量大

信息存儲應當決定,什麼信息存在什麼介質行比較合適。總的來說憑證文件應當用紙介質存儲;業務文件用紙或磁帶存儲;而主文件,如企業中企業結構;人事方面的檔案材料;設備或材料的庫存賬目,應當存於磁碟,以便聯機檢索和查詢。

參考鏈接:網路_信息儲存


⑦ 請你寫出信息儲存方式的演變過程

原始社會,人們用結繩記事,或者把各種信息雕刻在石頭等物體上面
在奴隸社會,人們在石頭、陶器、木板、竹片等物體上面雕刻信息,這一時期有了最原始的文字,人們可以在皮革和織物、木板、竹片等上面書寫信息。
再後來,發明了紙張,人們用紙張來儲存信息。
到了近代,人們發明了照相機,於是可以用膠片來存儲信息。同一時期,人們發現了電磁感應現象,開始利用物體電磁感應的規律製造出象磁帶、唱片等來存儲信息。並且在後來進一步發展了這一技術。象現在的大容量硬碟、快閃記憶體晶元、優盤等都是基於這一原理。
在20世紀70年代,人們發現了使用激光來存儲信息的方式,這就是我們今天常見到的各種光碟了。

⑧ 存儲器的發展史

存儲器設備發展

1.存儲器設備發展之汞延遲線

汞延遲線是基於汞在室溫時是液體,同時又是導體,每比特數據用機械波的波峰(1)和波谷(0)表示。機械波從汞柱的一端開始,一定厚度的熔融態金屬汞通過一振動膜片沿著縱向從一端傳到另一端,這樣就得名「汞延遲線」。在管的另一端,一感測器得到每一比特的信息,並反饋到起點。設想是汞獲取並延遲這些數據,這樣它們便能存儲了。這個過程是機械和電子的奇妙結合。缺點是由於環境條件的限制,這種存儲器方式會受各種環境因素影響而不精確。

1950年,世界上第一台具有存儲程序功能的計算機EDVAC由馮.諾依曼博士領導設計。它的主要特點是採用二進制,使用汞延遲線作存儲器,指令和程序可存入計算機中。

1951年3月,由ENIAC的主要設計者莫克利和埃克特設計的第一台通用自動計算機UNIVAC-I交付使用。它不僅能作科學計算,而且能作數據處理。

2.存儲器設備發展之磁帶

UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。

磁帶是所有存儲器設備發展中單位存儲信息成本最低、容量最大、標准化程度最高的常用存儲介質之一。它互換性好、易於保存,近年來,由於採用了具有高糾錯能力的編碼技術和即寫即讀的通道技術,大大提高了磁帶存儲的可靠性和讀寫速度。根據讀寫磁帶的工作原理可分為螺旋掃描技術、線性記錄(數據流)技術、DLT技術以及比較先進的LTO技術。

根據讀寫磁帶的工作原理,磁帶機可以分為六種規格。其中兩種採用螺旋掃描讀寫方式的是面向工作組級的DAT(4mm)磁帶機和面向部門級的8mm磁帶機,另外四種則是選用數據流存儲技術設計的設備,它們分別是採用單磁頭讀寫方式、磁帶寬度為1/4英寸、面向低端應用的Travan和DC系列,以及採用多磁頭讀寫方式、磁帶寬度均為1/2英寸、面向高端應用的DLT和IBM的3480/3490/3590系列等。

磁帶庫是基於磁帶的備份系統,它能夠提供同樣的基本自動備份和數據恢復功能,但同時具有更先進的技術特點。它的存儲容量可達到數百PB,可以實現連續備份、自動搜索磁帶,也可以在驅動管理軟體控制下實現智能恢復、實時監控和統計,整個數據存儲備份過程完全擺脫了人工干涉。

磁帶庫不僅數據存儲量大得多,而且在備份效率和人工佔用方面擁有無可比擬的優勢。在網路系統中,磁帶庫通過SAN(Storage Area Network,存儲區域網路)系統可形成網路存儲系統,為企業存儲提供有力保障,很容易完成遠程數據訪問、數據存儲備份或通過磁帶鏡像技術實現多磁帶庫備份,無疑是數據倉庫、ERP等大型網路應用的良好存儲設備。

3.存儲器設備發展之磁鼓

1953年,隨著存儲器設備發展,第一台磁鼓應用於IBM 701,它是作為內存儲器使用的。磁鼓是利用鋁鼓筒表面塗覆的磁性材料來存儲數據的。鼓筒旋轉速度很高,因此存取速度快。它採用飽和磁記錄,從固定式磁頭發展到浮動式磁頭,從採用磁膠發展到採用電鍍的連續磁介質。這些都為後來的磁碟存儲器打下了基礎。

磁鼓最大的缺點是利用率不高, 一個大圓柱體只有表面一層用於存儲,而磁碟的兩面都利用來存儲,顯然利用率要高得多。 因此,當磁碟出現後,磁鼓就被淘汰了。

4.存儲器設備發展之磁芯

美國物理學家王安1950年提出了利用磁性材料製造存儲器的思想。福雷斯特則將這一思想變成了現實。

為了實現磁芯存儲,福雷斯特需要一種物質,這種物質應該有一個非常明確的磁化閾值。他找到在新澤西生產電視機用鐵氧體變換器的一家公司的德國老陶瓷專家,利用熔化鐵礦和氧化物獲取了特定的磁性質。

對磁化有明確閾值是設計的關鍵。這種電線的網格和芯子織在電線網上,被人稱為芯子存儲,它的有關專利對發展計算機非常關鍵。這個方案可靠並且穩定。磁化相對來說是永久的,所以在系統的電源關閉後,存儲的數據仍然保留著。既然磁場能以電子的速度來閱讀,這使互動式計算有了可能。更進一步,因為是電線網格,存儲陣列的任何部分都能訪問,也就是說,不同的數據可以存儲在電線網的不同位置,並且閱讀所在位置的一束比特就能立即存取。這稱為隨機存取存儲器(RAM),在存儲器設備發展歷程中它是互動式計算的革新概念。福雷斯特把這些專利轉讓給麻省理工學院,學院每年靠這些專利收到1500萬~2000萬美元。

最先獲得這些專利許可證的是IBM,IBM最終獲得了在北美防衛軍事基地安裝「旋風」的商業合同。更重要的是,自20世紀50年代以來,所有大型和中型計算機也採用了這一系統。磁芯存儲從20世紀50年代、60年代,直至70年代初,一直是計算機主存的標准方式。

5.存儲器設備發展之磁碟

世界第一台硬碟存儲器是由IBM公司在1956年發明的,其型號為IBM 350 RAMAC(Random Access Method of Accounting and Control)。這套系統的總容量只有5MB,共使用了50個直徑為24英寸的磁碟。1968年,IBM公司提出「溫徹斯特/Winchester」技術,其要點是將高速旋轉的磁碟、磁頭及其尋道機構等全部密封在一個無塵的封閉體中,形成一個頭盤組合件(HDA),與外界環境隔絕,避免了灰塵的污染,並採用小型化輕浮力的磁頭浮動塊,碟片表面塗潤滑劑,實行接觸起停,這是現代絕大多數硬碟的原型。1979年,IBM發明了薄膜磁頭,進一步減輕了磁頭重量,使更快的存取速度、更高的存儲密度成為可能。20世紀80年代末期,IBM公司又對存儲器設備發展作出一項重大貢獻,發明了MR(Magneto Resistive)磁阻磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度比以往提高了數十倍。1991年,IBM生產的3.5英寸硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此,硬碟容量開始進入了GB數量級。IBM還發明了PRML(Partial Response Maximum Likelihood)的信號讀取技術,使信號檢測的靈敏度大幅度提高,從而可以大幅度提高記錄密度。

目前,硬碟的面密度已經達到每平方英寸100Gb以上,是容量、性價比最大的一種存儲設備。因而,在計算機的外存儲設備中,還沒有一種其他的存儲設備能夠在最近幾年中對其統治地位產生挑戰。硬碟不僅用於各種計算機和伺服器中,在磁碟陣列和各種網路存儲系統中,它也是基本的存儲單元。值得注意的是,近年來微硬碟的出現和快速發展為移動存儲提供了一種較為理想的存儲介質。在快閃記憶體晶元難以承擔的大容量移動存儲領域,微硬碟可大顯身手。目前尺寸為1英寸的硬碟,存儲容量已達4GB,10GB容量的1英寸硬碟不久也會面世。微硬碟廣泛應用於數碼相機、MP3設備和各種手持電子類設備。

另一種磁碟存儲設備是軟盤,從早期的8英寸軟盤、5.25英寸軟盤到3.5英寸軟盤,主要為數據交換和小容量備份之用。其中,3.5英寸1.44MB軟盤占據計算機的標准配置地位近20年之久,之後出現過24MB、100MB、200MB的高密度過渡性軟盤和軟碟機產品。然而,由於USB介面的快閃記憶體出現,軟盤作為數據交換和小容量備份的統治地位已經動搖,不久會退出存儲器設備發展歷史舞台。

6. 存儲器設備發展之光碟

光碟主要分為只讀型光碟和讀寫型光碟。只讀型指光碟上的內容是固定的,不能寫入、修改,只能讀取其中的內容。讀寫型則允許人們對光碟內容進行修改,可以抹去原來的內容,寫入新的內容。用於微型計算機的光碟主要有CD-ROM、CD-R/W和DVD-ROM等幾種。

上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。

從LD的誕生至計算機用的CD-ROM,經歷了三個階段,即LD-激光視盤、CD-DA激光唱盤、CD-ROM。下面簡單介紹這三個存儲器設備發展階段性的產品特點。

LD-激光視盤,就是通常所說的LCD,直徑較大,為12英寸,兩面都可以記錄信息,但是它記錄的信號是模擬信號。模擬信號的處理機制是指,模擬的電視圖像信號和模擬的聲音信號都要經過FM(Frequency Molation)頻率調制、線性疊加,然後進行限幅放大。限幅後的信號以0.5微米寬的凹坑長短來表示。

CD-DA激光唱盤 LD雖然取得了成功,但由於事先沒有制定統一的標准,使它的開發和製作一開始就陷入昂貴的資金投入中。1982年,由飛利浦公司和索尼公司制定了CD-DA激光唱盤的紅皮書(Red Book)標准。由此,一種新型的激光唱盤誕生了。CD-DA激光唱盤記錄音響的方法與LD系統不同,CD-DA激光唱盤系統首先把模擬的音響信號進行PCM(脈沖編碼調制)數字化處理,再經過EMF(8~14位調制)編碼之後記錄到盤上。數字記錄代替模擬記錄的好處是,對干擾和雜訊不敏感,由於盤本身的缺陷、劃傷或沾污而引起的錯誤可以校正。

CD-DA系統取得成功以後,使飛利浦公司和索尼公司很自然地想到利用CD-DA作為計算機的大容量只讀存儲器。但要把CD-DA作為計算機的存儲器,還必須解決兩個重要問題,即建立適合於計算機讀寫的盤的數據結構,以及CD-DA誤碼率必須從現有的10-9降低到10-12以下,由此就產生了CD-ROM的黃皮書(Yellow Book)標准。這個標準的核心思想是,盤上的數據以數據塊的形式來組織,每塊都要有地址,這樣一來,盤上的數據就能從幾百兆位元組的存儲空間上被迅速找到。為了降低誤碼率,採用增加一種錯誤檢測和錯誤校正的方案。錯誤檢測採用了循環冗餘檢測碼,即所謂CRC,錯誤校正採用里德-索洛蒙(Reed Solomon)碼。黃皮書確立了CD-ROM的物理結構,而為了使其能在計算機上完全兼容,後來又制定了CD-ROM的文件系統標准,即ISO 9660。

在上世紀80年代中期,光碟存儲器設備發展速度非常快,先後推出了WORM光碟、磁光碟(MO)、相變光碟(Phase Change Disk,PCD)等新品種。20世紀90年代,DVD-ROM、CD-R、CD-R/W等開始出現和普及,目前已成為計算機的標准存儲設備。

光碟技術進一步向高密度發展,藍光光碟是不久將推出的下一代高密度光碟。多層多階光碟和全息存儲光碟正在實驗室研究之中,可望在5年之內推向市場。

7.存儲器設備發展之納米存儲

納米是一種長度單位,符號為nm。1納米=1毫微米,約為10個原子的長度。假設一根頭發的直徑為0.05毫米,把它徑向平均剖成5萬根,每根的厚度即約為1納米。與納米存儲有關的主要進展有如下內容。

1998年,美國明尼蘇達大學和普林斯頓大學制備成功量子磁碟,這種磁碟是由磁性納米棒組成的納米陣列體系。一個量子磁碟相當於我們現在的10萬~100萬個磁碟,而能源消耗卻降低了1萬倍。

1988年,法國人首先發現了巨磁電阻效應,到1997年,採用巨磁電阻原理的納米結構器件已在美國問世,它在磁存儲、磁記憶和計算機讀寫磁頭等方面均有廣闊的應用前景。

2002年9月,美國威斯康星州大學的科研小組宣布,他們在室溫條件下通過操縱單個原子,研製出原子級的硅記憶材料,其存儲信息的密度是目前光碟的100萬倍。這是納米存儲材料技術研究的一大進展。該小組發表在《納米技術》雜志上的研究報告稱,新的記憶材料構建在硅材料表面上。研究人員首先使金元素在硅材料表面升華,形成精確的原子軌道;然後再使硅元素升華,使其按上述原子軌道進行排列;最後,藉助於掃瞄隧道顯微鏡的探針,從這些排列整齊的硅原子中間隔抽出硅原子,被抽空的部分代表「0」,餘下的硅原子則代表「1」,這就形成了相當於計算機晶體管功能的原子級記憶材料。整個試驗研究在室溫條件下進行。研究小組負責人赫姆薩爾教授說,在室溫條件下,一次操縱一批原子進行排列並不容易。更為重要的是,記憶材料中硅原子排列線內的間隔是一個原子大小。這保證了記憶材料的原子級水平。赫姆薩爾教授說,新的硅記憶材料與目前硅存儲材料存儲功能相同,而不同之處在於,前者為原子級體積,利用其製造的計算機存儲材料體積更小、密度更大。這可使未來計算機微型化,且存儲信息的功能更為強大。

以上就是本文向大家介紹的存儲器設備發展歷程的7個關鍵時期

⑨ 未來 信息存儲技術 的發展趨勢,大概哪些方向就行,如果回答詳細的話,可以提高懸賞

目前炒得比較火的概念是:雲存儲
IT行業的熱門是雲,那麼存儲行業作為IT行業的子類也必須要順應趨勢。
雲存儲的概念網上有,我就不追述了。

其實存儲作為底層的核心數據存放設備,需要支持各種上層的業務,所以需要關注相關行業的新技術和新領域,存儲現在最大的性能瓶頸在於磁碟,等SSD磁碟普及後(包括價格和容量),存儲的勢頭將更加迅猛。

⑩ 信息存儲技術的背景 應用 發展以及趨勢

信息存儲技術作為信息技術的核心之一,一直伴隨著、同時推動著IT業各方面技術的協同發展,是當今IT領域中少數發展最為迅速的熱點之一。紙的發明記載了人類的歷史和文明,現代信息存儲技術則大大超越了紙張記錄的含義。21世紀是數字化和多媒體化的信息時代,現代信息社會和經濟的發展,所產生的信息量每年以指數方式上升,出現了信息爆炸的態勢。據UC Berkley 2001年公布的數據顯示,未來3年內所產生的數據將超過過去4萬年中產生數據的總和,而且93%的新生成的信息為數字形式。當上世紀50年代計算機技術初現時,存儲容量還只是以千位位元組計…http://www.cnki.com.cn/Article/CJFD2006-CXJL200605012.htm

熱點內容
安卓上哪裡下大型游戲 發布:2024-12-23 15:10:58 瀏覽:186
明日之後目前適用於什麼配置 發布:2024-12-23 14:56:09 瀏覽:51
php全形半形 發布:2024-12-23 14:55:17 瀏覽:826
手機上傳助手 發布:2024-12-23 14:55:14 瀏覽:730
什麼樣的主機配置吃雞開全效 發布:2024-12-23 14:55:13 瀏覽:828
安卓我的世界114版本有什麼 發布:2024-12-23 14:42:17 瀏覽:708
vbox源碼 發布:2024-12-23 14:41:32 瀏覽:275
詩經是怎麼存儲 發布:2024-12-23 14:41:29 瀏覽:657
屏蔽視頻廣告腳本 發布:2024-12-23 14:41:24 瀏覽:417
php解析pdf 發布:2024-12-23 14:40:01 瀏覽:816