當前位置:首頁 » 存儲配置 » 什麼是並行存儲

什麼是並行存儲

發布時間: 2022-06-30 21:19:41

A. 硬碟的串列和並行是什麼意思

串列的是SATA介面,並行的是IDE介面
今日談隨著技術的成熟,越來越多的主板和硬碟都開始支持SATA(串列ATA),SATA介面逐漸有取代傳統的PATA(並行ATA)的趨勢。

那麼SATA和PATA在傳輸模式上有何區別,SATA相對PATA又有何優勢呢?這就正是本文需要討論的話題。

何謂並行ATA

ATA其實是IDE設備的介面標准,大部分硬碟、光碟機、軟碟機等等都使用的是ATA介面。譬如現在絕大部分的朋友用的都是並行ATA介面的硬碟,應該對它80針排線的介面是再熟悉不過了吧?平常我們說到硬碟介面,就不得不提到什麼Ultra-ATA/100、Ultra-ATA/133,這表示什麼呢?這告訴我們該硬碟介面的最大傳輸速率為100MB/s和133MB/s,且硬碟是以並行的方式進行數據傳輸,所以我們也把這類硬碟稱為並行ATA。

何謂串列ATA

串列ATA全稱是Serial ATA,它是一種新的介面標准。與並行ATA的主要不同就在於它的傳輸方式。它和並行傳輸不同,它只有兩對數據線,採用點對點傳輸,以比並行傳輸更高的速度將數據分組傳輸。現在的串列ATA介面傳輸速率為150MB/s,而且這個值將會迅速增長。

串列ATA和並行ATA傳輸的區別

舉個比較誇張的例子,A、B兩支隊伍在比賽搬運包裹,A代表並行ATA,B代表串列ATA。

比賽開始,A派出了40個人用人力搬運包裹,而B只派出去了一輛貨車來搬運。在一個來回里他們搬運的包裹數量都相同,大家可以很清楚最後的結果,當然是用貨車搬運的B隊先把包裹運完,因為貨車的速度比人步行的速度快得多多了。同樣,串列傳輸比並行傳輸的速率高就類似這個道理。

回到現實中來,現在的並行ATA介面使用的是16位的雙向匯流排,在1個數據傳輸周期內可以傳輸4個位元組的數據;而串列ATA使用的8位匯流排,每個時鍾周期能傳送1個位元組。

這兩種傳輸方式除了在每個時鍾周期內傳輸速度不一樣之外,在傳輸的模式上也有根本的區別,串列ATA數據是一個接著一個數據包進行傳輸,而並行ATA則是一次同時傳送數個數據包,雖然表面上一個周期內並行ATA傳送的數據更多,但是我們不要忘了,串列ATA的時鍾頻率要比並行的時鍾頻率高很多,也就是說,單位時間內,進行數據傳輸的周期數目更多,所以串列ATA的傳輸率高於並行ATA的傳輸率,並且未來還有更大的提升空間。

為什麼我們要採用串列ATA介面?

這個回答很簡單,當然是為了獲得更高的數據傳輸率。隨著當前設備需求的數據傳輸率越來越高,介面的工作頻率也越來越高,並行ATA介面逐漸暴露出一些設計上的「硬傷」,其中最致命的就是並行線路的信號干擾。由於傳統並行ATA採用並行的匯流排傳輸數據,必須要求各個線路上數據同步,如果數據不能同步,就會出現反復讀取數據,導致性能的下降,甚至導致讀取數據不穩定。

而採用排線設計的數據線,正是數據讀取無法更快的「罪魁禍首」。由於並排的高速信號在傳輸時,會在每條電纜的周圍產生微弱的電磁場,進而影響到其它數據線中的數據傳遞,還會因為線纜的長度和電壓的變化而不斷變化,隨著匯流排頻率的提升,磁場的強度也越來越大,信號干擾的影響也越來越明顯。

從理論上說串列傳輸的工作頻率可以無限提高,串列ATA就是通過提高工作頻率來提升介面傳輸速率的。因此串列ATA可以實現更高的傳輸速率,而並行ATA在沒有有效地解決信號串擾問題之前,則很難達到這樣高的傳輸速率。

並行ATA介面在匯流排頻率方面受到其設計的制約,並不能一味地提升,而隨著對數據傳輸率的要求越來越高,目前最快的並行ATA介面ATA133的頻率為33MHz,這個幾乎已經達到了並行介面的極限,再繼續改造線路已不太現實。所以推出新的介面勢在必行。

除了傳輸率較高之外,SATA還有哪些優點呢?

1.數據更可靠

在校驗方面,並行ATA匯流排只是簡單的CRC校驗,一旦接收方發現數據傳輸出現問題,就會自行將這些數據丟棄、然後要求重發,如果數據信號相互干擾過大,就會嚴重影響硬碟的性能。

而串列ATA既對命令進行CRC校驗,也對數據分組進行CRC校驗,以此提高匯流排的可靠性。

2.連線更簡單

在數據線方面,並行ATA採用80針的排線,串列ATA由於採用點對點方式傳輸數據,所以只需要4條線路即可完成發送和接收功能,加上另外的三條地線,一共只需要7條的物理連線就可滿足數據傳輸的需要。由於傳輸數據線較少,使得SATA在物理線路的電氣性能方面的干擾大大減小,這也保證了未來磁碟傳輸率進一步的提升。

和並行ATA相比,串列ATA的數據線更細小,這也使得機箱內部的連線比較容易整理,有助於機箱內部空氣的流通,使得機箱內部的散熱更好。同樣,串列ATA還有採用非排針腳設計的介面和支持熱插拔功能等優點。

串列ATA推出之後,並行ATA還會存在嗎?

總的說來,串列ATA的優勢是很明顯的。當然,目前還有一些相對比較低速的設備在使用並行ATA,如光碟機、刻錄機等設備,並行ATA的傳輸率已經可以滿足的需要,所以,並行和串列會在很長一段時間內並存。當然,串列ATA支持所有的ATA設備,也可支持光碟機等設備,但是串列ATA目前會先運用在硬碟上,未來將會支持更多的存儲設備。

B. 什麼是並行資料庫

並行資料庫系統(Parallel Database System)是新一代高性能的資料庫系統,是在MPP和集群並行計算環境的基礎上建立的資料庫系統。 並行資料庫技術起源於20世紀70年代的資料庫機(Database Machine)研究,,研究的內容主要集中在關系代數操作的並行化和實現關系操作的專用硬體設計上,希望通過硬體實現關系資料庫操作的某些功能,該研究以失敗而告終。80年代後期,並行資料庫技術的研究方向逐步轉到了通用並行機方面,研究的重點是並行資料庫的物理組織、操作演算法、優化和調度策絡。從90年代至今,隨著處理器、存儲、網路等相關基礎技術的發展,並行資料庫技術的研究上升到一個新的水平,研究的重點也轉移到數據操作的時間並行性和空間並行性上。 並行資料庫系統的目標是高性能(High Performance)和高可用性(High Availability),通過多個處理節點並行執行資料庫任務,提高整個資料庫系統的性能和可用性。 性能指標關注的是並行資料庫系統的處理能力,具體的表現可以統一總結為資料庫系統處理事務的響應時間。並行資料庫系統的高性能可以從兩個方面理解,一個是速度提升(SpeedUp),一個是范圍提升(ScaleUp)。速度提升是指,通過並行處理,可以使用更少的時間完成兩樣多的資料庫事務。范圍提升是指,通過並行處理,在相同的處理時間內,可以完成更多的資料庫事務。並行資料庫系統基於多處理節點的物理結構,將資料庫管理技術與並行處理技術有機結合,來實現系統的高性能。 可用性指標關注的是並行資料庫系統的健壯性,也就是當並行處理節點中的一個節點或多個節點部分失效或完全失效時,整個系統對外持續響應的能力。高可用性可以同時在硬體和軟體兩個方面提供保障。在硬體方面,通過冗餘的處理節點、存儲設備、網路鏈路等硬體措施,可以保證當系統中某節點部分或完全失效時,其它的硬體設備可以接手其處理,對外提供持續服務。在軟體方面,通過狀態監控與跟蹤、互相備份、日誌等技術手段,可以保證當前系統中某節點部分或完全失效時,由它所進行的處理或由它所掌控的資源可以無損失或基本無損失地轉移到其它節點,並由其它節點繼續對外提供服務。 為了實現和保證高性能和高可用性,可擴充性也成為並行資料庫系統的一個重要指標。可擴充性是指,並行資料庫系統通過增加處理節點或者硬體資源(處理器、內存等),使其可以平滑地或線性地擴展其整體處理能力的特性。 隨著對並行計算技術研究的深入和SMP、MPP等處理機技術的發展,並行資料庫的研究也進入了一個新的領域,集群已經成為了並行資料庫系統中最受關注的熱點。目前,並行資料庫領域主要還有下列問題需要進一步地研究和解決。 (1)並行體系結構及其應用,這是並行資料庫系統的基礎問題。為了達到並行處理的目的,參與並行處理的各個處理節點之間是否要共享資源、共享哪些資源、需要多大程度的共享,這些就需要研究並行處理的體系結構及有關實現技術。 (2)並行資料庫的物理設計,主要是在並行處理的環境下,數據分布的演算法的研究、資料庫設計工具與管理工具的研究。 (3)處理節點間通訊機制的研究。為了實現並行資料庫的高性能,並行處理節點要最大程度地協同處理資料庫事務,因此,節點間必不可少地存在通訊問題,如何支持大量節點之間消息和數據的高效通訊,也成為了並行資料庫系統中一個重要的研究課題。 (4)並行操作演算法,為提高並行處理的效率,需要在數據分布演算法研究的基礎上,深入研究聯接、聚集、統計、排序等具體的數據操作在多節點上的並行操作演算法。 (5)並行操作的優化和同步,為獲得高性能,如何將一個資料庫處理事務合理地分解成相對獨立的並行操作步驟、如何將這些步驟以最優的方式在多個處理節點間進行分配、如何在多個處理節點的同一個步驟和不同步驟之間進行消息和數據的同步,這些問題都值得深入研究。 (6)並行資料庫中數據的載入和再組織技術,為了保證高性能和高可用性,並行資料庫系統中的處理節點可能需要進行擴充(或者調整),這就需要考慮如何對原有數據進行卸載、載入,以及如何合理地在各個節點是重新組織數據。

C. 多體並行存儲系統中為什麼IO訪存級別高於CPU訪存

教材P106左下角,寫得明明白白:

對易發生代碼丟失的請求源,應列為最高優先順序,例如,外設信息最易丟失,故它的級別最高

對於多體並行系統(現代存儲器都是這種形式),存在一個訪存時的排隊問題。

D. 什麼是並行存儲結構

你到底是問軟體還是硬體?軟體屬於編程范疇,我不懂。硬體上所謂的磁碟陣列就是屬於並行存儲結構,即利用多通道同時存儲(讀取)的方式來加快磁碟讀取(存儲)的速度,一般伺服器上都用。

E. 主存儲器常採用並行存儲器的目的

主存儲器常採用並行存儲器的目的是通過並行主存儲器和設置Cache來提高速度。
雙埠存儲器和多體交叉存儲器屬於並行存儲器。
目前通常採用多級存儲器體系結構,有高速緩沖存儲器、主存儲器、外存儲器。

F. 並行存儲器採用的什麼並行技術

多通道並行技術

包括內存的板上雙通道或多通道(系統內存、顯存等均有);
內存顆粒內部的多通道,例如DDR2就是內存晶元內部雙通道實現的高傳輸率(缺點是高延遲);
磁碟的RAID技術,SSD硬碟內部的多通道技術等等。

以上都屬於多通道並行技術。

G. 存儲器可分為哪三類

存儲器不僅可以分為三類。因為按照不同的劃分方法,存儲器可分為不同種類。常見的分類方法如下。

一、按存儲介質劃分

1. 半導體存儲器:用半導體器件組成的存儲器。

2. 磁表面存儲器:用磁性材料做成的存儲器。

二、按存儲方式劃分

1. 隨機存儲器:任何存儲單元的內容都能被隨機存取,且存取時間和存儲單元的物理位置無關。

2. 順序存儲器:只能按某種順序來存取,存取時間和存儲單元的物理位置有關。

三、按讀寫功能劃分

1. 只讀存儲器(ROM):存儲的內容是固定不變的,只能讀出而不能寫入的半導體存儲器。

2. 隨機讀寫存儲器(RAM):既能讀出又能寫入的存儲器。

二、選用各種存儲器,一般遵循的選擇如下:

1、內部存儲器與外部存儲器

一般而言,內部存儲器的性價比最高但靈活性最低,因此用戶必須確定對存儲的需求將來是否會增長,以及是否有某種途徑可以升級到代碼空間更大的微控制器。基於成本考慮,用戶通常選擇能滿足應用要求的存儲器容量最小的微控制器。

2、引導存儲器

在較大的微控制器系統或基於處理器的系統中,用戶可以利用引導代碼進行初始化。應用本身通常決定了是否需要引導代碼,以及是否需要專門的引導存儲器。

3、配置存儲器

對於現場可編程門陣列(FPGA)或片上系統(SoC),可以使用存儲器來存儲配置信息。這種存儲器必須是非易失性EPROM、EEPROM或快閃記憶體。大多數情況下,FPGA採用SPI介面,但一些較老的器件仍採用FPGA串列介面。

4、程序存儲器

所有帶處理器的系統都採用程序存儲器,但是用戶必須決定這個存儲器是位於處理器內部還是外部。在做出了這個決策之後,用戶才能進一步確定存儲器的容量和類型。

5、數據存儲器

與程序存儲器類似,數據存儲器可以位於微控制器內部,或者是外部器件,但這兩種情況存在一些差別。有時微控制器內部包含SRAM(易失性)和EEPROM(非易失)兩種數據存儲器,但有時不包含內部EEPROM,在這種情況下,當需要存儲大量數據時,用戶可以選擇外部的串列EEPROM或串列快閃記憶體器件。

6、易失性和非易失性存儲器

存儲器可分成易失性存儲器或者非易失性存儲器,前者在斷電後將丟失數據,而後者在斷電後仍可保持數據。用戶有時將易失性存儲器與後備電池一起使用,使其表現猶如非易失性器件,但這可能比簡單地使用非易失性存儲器更加昂貴。

7、串列存儲器和並行存儲器

對於較大的應用系統,微控制器通常沒有足夠大的內部存儲器。這時必須使用外部存儲器,因為外部定址匯流排通常是並行的,外部的程序存儲器和數據存儲器也將是並行的。

8、EEPROM與快閃記憶體

存儲器技術的成熟使得RAM和ROM之間的界限變得很模糊,如今有一些類型的存儲器(比如EEPROM和快閃記憶體)組合了兩者的特性。這些器件像RAM一樣進行讀寫,並像ROM一樣在斷電時保持數據,它們都可電擦除且可編程,但各自有它們優缺點。

參考資料來源:網路——存儲器

H. 阿姆達爾定律的並行存儲性能中的阿姆達爾定律

並行存儲系統的性能分析可以通過簡單的性能模型展開,這其中主要就是阿姆達爾定律。阿姆達爾定律是一個非常簡單而通用的並行處理性能模型。這里以程序的並行運行為例說明該定律,其他情況比較容易進行推推導分析。由於單個程序內部不一定全部可以實現並行處理。那麼假設f為程序中必須進行串列操作的部分比率,其餘的1-f部分則認為可以完全在硬體上並行執行,而且P表示硬體的並行度。P在不同形式的計算機系統中代表著不同的含義:
(1)在MIMD系統中,P是處理器的數目;
(2)在SIMD系統中,P是正在處理的數據數目;
(3)在流水方式工作的SIMD系統中,P是矢量速度和標量速度的比;
(4)在流水方式工作的MIMD系統中,P是流水線功能段的數目。
為了在並行度p的硬體上獲得50%以上的效率,穿行操縱部分比率不能超過1/(P-1)。隨著P的增加,相應條件也越來越難以滿足。最早應用Amdahl定律對串列處理進行性能評價,但是在各種並行工作環境中Amdahl定律也非常有用。例如:在並行度很高的系統中,輕微的非並行代碼會對系統帶來很大的影響;快速的矢量處理器必須具有一個快速的標量處理器以獲得其峰值性能的相當大部分能力;對當前穿行執行的小部分代碼進行並行完成也可以增加相當大的效率。
雖然Amdahl定律建立了一個非常簡單的行囊模型,但也不能過於簡單化使用。系統規模,特別是處理器數目P通常為了處理更大的問題而不斷增加,而通常問題的規模的增加並不能顯著增加串列工作量。這種情況下,f與問題大小成反比。如果問題大小歲並行度P增加而增大,那麼隨著問題和系統規模的增大,性能表現呈現出收縮性。在計算機系統中,Amdahl定律也可表述為,對系統內某部分的並行化改進造成的整體性能提升量取決於該部分在整體過程中執行的時間,即經常性事件或其部分的改進造成的整體性能得到較大提升。加速比也可以表示為使用改進方式完成整個任務時間的比值。實際上有兩個主要因素影響加速比,第一個因素是需要改進提高速度部分在總執行時間中所佔的比值。實際上有兩個主要因素影響加速比,第一個因素是需要改進提高速度部分在總執行時間中所佔的比例。譬如,1s完成的人物其中有200ms可以改進,那麼該比例救贖20%,可以稱為改進比例。第二個因素是採用改進方式後相應部分速度提高的程度。可以用未改進情況下該部分執行時間與改進後執行時間的比值衡量。改進加速比一般都大於1。那麼改進後的任務總時間為沒有改進的部分執行時間和改進部分執行時間的和。

I. 什麼是寄存器,什麼是扇區,什麼是磁軌,什麼是並行,什麼是串列

1寄存器
寄存器是中央處理器內的組成部份。

寄存器用途主要有
1.可將寄存器內的數據執行算術及邏輯運算;
2.存於寄存器內的地址可用來指向內存的某個位置,即定址;
3.可以用來讀寫數據到電腦的周邊設備。

扇區
磁碟上的每個磁軌被等分為若干個弧段,這些弧段便是磁碟的扇區。磁碟驅動器在向磁碟讀取和寫入數據時,要以扇區為單位。在磁碟上,DOS操作系統是以「簇」為單位為文件分配磁碟空間的。硬碟的簇通常為多個扇區,與磁碟的種類、DOS 版本及硬碟分區的大小有關。每個簇只能由一個文件佔用,即使這個文件中有幾個位元組,決不允許兩個以上的文件共用一個簇,否則會造成數據的混亂。這種以簇為最小分配單位的機制,使硬碟對數據的管理變得相對容易,但也造成了磁碟空間的浪費,尤其是小文件數目較多的情況下,一個上千兆的大硬碟,其浪費的磁碟空間可達上百兆位元組。

簡單的來說所謂的扇區就是最小的存儲單位,也就是沒一個碟片上面的扇行區域。

磁軌

磁軌
每個磁頭都會在磁碟表面劃出一個圓形軌跡,這些圓形軌跡就叫做磁軌。磁表面存儲器是在不同形狀(如盤狀、帶狀等)的載體上,塗有磁性材料層,工作時,靠載磁體高速運動,由磁頭在磁層上進行讀寫操作,信息被記錄在磁層上,這些信息的軌跡就是磁軌。磁碟的磁軌是一個個同心圓,見右圖,磁帶的磁軌是沿磁帶長度方向的直線,這些磁軌用肉眼是根本看不到的,因為它們僅是盤面上以特殊方式磁化了的一些磁化區,磁碟上的信息便是沿著這樣的軌道存放的。相鄰磁軌之間並不是緊挨著的,這是因為磁化單元相隔太近時磁性會產生相互影響,同時也為磁頭的讀寫帶來困難。

並行—串列

在計算機中,數據傳輸的方式有兩種:
iptables 一種就是串列(serial)通訊,每個字元的二進制位按位排列進行傳輸,速度慢,但傳輸距離相對較遠,滑鼠口和USB口都是串列埠;
另一種是並行(parallel)通訊,每個字元的二進制位使用多條數據線同時進行傳輸,傳輸速度相對要快些,但傳輸距離相對不能太遠,計算機內部數據傳輸一般都是採用這種方法,標准列印口是屬並行埠。

J. 並行存儲器和串列存儲器各自的優點

是啊,都有自己的優點,就象PATA和SATA一樣

熱點內容
安卓手機怎麼看國內 發布:2025-03-15 05:43:01 瀏覽:729
游戲中心密碼在哪裡看 發布:2025-03-15 05:41:09 瀏覽:941
微信支付android開發 發布:2025-03-15 05:29:35 瀏覽:656
密度值演算法 發布:2025-03-15 05:26:41 瀏覽:318
暑期學編程 發布:2025-03-15 05:21:33 瀏覽:346
加密與 發布:2025-03-15 05:21:25 瀏覽:720
安卓如何把時鍾插件調出來 發布:2025-03-15 05:19:11 瀏覽:50
安卓旋鈕主機音量大小怎麼調整 發布:2025-03-15 05:19:05 瀏覽:755
如何將支付密碼關掉 發布:2025-03-15 05:16:55 瀏覽:933
java培訓學院 發布:2025-03-15 05:11:22 瀏覽:34