cpu是以什麼文件形式存儲的
『壹』 電腦CPU是什麼有什麼作用硬碟又是什麼
什麼是硬碟:
硬碟是一種主要的電腦外存儲器,具備容量大速度快等優點。硬碟是一種機械設備,盤體由多個疊在一起的圓形碟片構成(碟片為金屬磁性材料,可在兩面存儲數據),並以圓心為軸旋轉(很象唱機播放唱片),讀寫頭通過機械臂與碟片互相湊近,並將數據以位為單位存儲和讀取。當您讀取一個文件時,讀寫頭沿著旋轉的碟片外表前後移動,直到找到需要的數據。系統通過磁碟控制器將數據裝載到內存中。在存儲數據時,計算機再將數據以磁記錄的方式寫回到硬碟中。
硬碟的作用:
在所有的電腦組件中,硬碟就是用來儲存我們平時安裝的軟體、電影、游戲、音樂等的一個數據容器。在一台電腦中,硬碟的作用僅次於CPU和內存。他的主要功能是存儲操作系統、程序以及數據。
假如想在電腦上編輯圖片、打游戲或者聽音樂,一個大容量、快速度以及可靠的硬碟非常重要。因為在操作過程或上網過程中,可能存儲大量的臨時文件在硬碟上,影響運行速度。因此需要定期進行硬碟的碎片整理和硬碟修復工作。在整理或修復時,假如出現數據丟失,可採用硬碟數據恢復的方式找回數據。
現在硬碟子系統是限制電腦性能的最大瓶頸,硬碟雖是較快的外存,但它的速度與CPU內存相比實在很慢。
硬碟也是電腦中一種很脆弱的設備,需要愛護。由於輕微的震動都有可能造成硬碟損壞。硬碟損壞後,可以送到專業的硬碟維修點進行檢查,但上面的數據就很有可能就丟失掉了。
什麼是內存:
內存一般指的是隨機存取存儲器,簡稱RAM。尋常所提到的電腦的內存指的是動態內存,即DRAM。除此之外,還有各種用途的內存,如顯示卡使用的VRAM,存儲系統設置信息的CMOS
RAM等。
動態內存中所謂的「動態」,指的是當將數據寫入DRAM後,經過一段時間,數據會丟失,所以需要一個內存刷新(Memory
Refresh)的操作,這要額外設計一個電路。可以這樣理解:一個DRAM的存儲單元存儲的是0還是1取決於電容是不是有電荷,有電荷代表1,無電荷代表0。但時間一長,代表1的電容會放電,代表0的電容會吸收電荷,這就是數據丟失的原因;刷新操作定期對電容進行檢查,若電量大於滿電量的1/2,則認為其代表1,並把電容充滿電;若電量小於1/2,則認為其代表0,並把電容放電,籍此來保持數據的連續性。有了刷新操作,動態內存的存取速度比靜態內存要慢很多。
內存的數據說輸量很大,難免發生錯誤,在較高請求時,需要有檢驗錯誤和矯正錯誤的功能。
內存的作用:
內存是聯接CPU和其他設備的通道,用來存儲CPU處理的臨時數據和程序指令,起到緩沖和數據替換作用,電腦中所有運行的程序都需要先從硬碟等存儲設備讀入到內存來執行,CPU處理後的數據一般也要先儲存在內存中,再傳送到其它設備進行存儲或處理。內存在計算機中的作用很大,電腦中所有運行的程序都需要經過內存來執行,假如執行的程序很大或很多,就會導致內存損耗殆盡。為了解決這個問題,Windows中運用了虛擬內存技術,即拿出一部分硬碟空間來充當內存使用,當內存佔用完時,電腦就會自動調用硬碟來充當內存,以緩解內存的緊張。舉一個例子來說,假如電腦只有128MB物理內存的話,當讀取一個容量為200MB的文件時,就必須要用到比較大的虛擬內存,文件被內存讀取之後就會先儲存到虛擬內存,等待內存把文件全部儲存到虛擬內存之後,跟著就會把虛擬內里儲存的文件釋放到原來的安裝目錄里。
『貳』 計算機中的信息都是以什麼形式存放的
計算機中所有信息都是以二進制的形式存儲在電腦內部的。
二進制(binary)在數學和數字電路中指以2為基數的記數系統,以2為基數代表系統是二進位制的。這一系統中,通常用兩個不同的符號0(代表零)和1(代表一)來表示。
數字電子電路中,邏輯門的實現直接應用了二進制,因此現代的計算機和依賴計算機的設備里都用到二進制。每個數字稱為一個比特(Bit,Binary digit的縮寫)。
(2)cpu是以什麼文件形式存儲的擴展閱讀:
計算機採用二進制原因
1、二進位計數制僅用兩個數碼。0和1,所以,任何具有二個不同穩定狀態的元件都可用來表示數的某一位。而在實際上具有兩種明顯穩定狀態的元件很多。
2、二進位計數制的四則運算規則十分簡單。而且四則運算最後都可歸結為加法運算和移位,這樣,電子計算機中的運算器線路也變得十分簡單了。不僅如此,線路簡化了,速度也就可以提高。這也是十進位計數制所不能相比的。
3、在電子計算機中採用二進製表示數可以節省設備。可 以從理論上證明,用三進位制最省設備,其次就是二進位制。但由於二進位制有包括三進位制在內的其他進位制所沒有的優點,所以大多數電子計算機還是採用二進制。
『叄』 在存儲器中,數據和程序是以什麼形式存放的
在存儲器中,數據和程序是以二進制形式存放的。程序操作所需的計算機程序和數據以二進制形式存儲在計算機內存中。
程序和數據存儲在內存中,即「存儲程序」的概念。 當計算機執行程序時,不需要人工干預,就可以自動連續執行程序,並獲得預期的結果。
存儲器是計算機的存儲設備,其主要功能是存儲程序和數據。 程序是計算機操作的基礎,數據是計算機操作的對象。
(3)cpu是以什麼文件形式存儲的擴展閱讀:
存儲容量的大小以位元組為單位,通常以KB(千位元組),MB(兆位元組),GB(千兆位元組)和TB表示,其之間的關系為:1KB = 1024B = 210B,1MB = 1024KB = 220B,1GB = 1024MB = 230B,1TB = 1024G = 240B,(1024 = 2 ^ 32)。
半導體存儲器廣泛用於現代計算機系統中。 從使用功能的角度來看,半導體存儲器可分為兩類:易失性(Volatile)存儲器和斷電後不會丟失的數據非易失性(Non-volatile)存儲器。
微型計算機中的RAM是易失性存儲器,可以隨機讀取和寫入,而ROM是非易失性(Non-volatile)存儲器。
『肆』 CPU是什麼東西
CPU是英語「Central Processing Unit/中央處理器」的縮寫,CPU一般由邏輯運算單元、控制單元和存儲單元組成。在邏輯運算和控制單元中包括一些寄存器,這些寄存器用於CPU在處理數據過程中數據的暫時保存。
CPU主要的性能指標
1.主頻
主頻也叫時鍾頻率,用來表示CPU內核工作的時鍾頻率(CPU Clock Speed),即CPU內數字脈沖信號震盪的速度。
2.外頻
外頻是CPU與主板之間同步運行的速度。
3.前端匯流排(FSB)頻率
匯流排是將計算機微處理器與內存晶元以及與之通信的設備連接起來的硬體通道。前端匯流排將CPU連接到主內存和通向磁碟驅動器、數據機以及網卡這類系統部件的外設匯流排。人們常常以MHz表示的速度來描述匯流排頻率。
前端匯流排(FSB)頻率是直接影響CPU與內存直接數據交換速度。由於數據傳輸最大帶寬取決於所有同時傳輸的數據的寬度和傳輸頻率,即數據帶寬=(匯流排頻率×數據位寬)÷8。
4、CPU的位和字長
位:在數字電路和電腦技術中採用二進制,代碼只有「0」和「1」,其中無論是 「0」或是「1」在CPU中都是 一「位」。
字長:電腦技術中對CPU在單位時間內(同一時間)能一次處理的二進制數的位數叫字長。所以能處理字長為8位數據的CPU通常就叫8位的CPU。同理32位的CPU就能在單位時間內處理字長為32位的二進制數據。位元組和字長的區別:由於常用的英文字元用8位二進制就可以表示,所以通常就將8位稱為一個位元組。字長的長度是不固定的,對於不同的CPU、字長的長度也不一樣。8位的CPU一次只能處理一個位元組,而32位的CPU一次就能處理4個位元組,同理字長為64位的CPU一次可以處理8個位元組。
5.倍頻系數
倍頻系數是指CPU主頻與外頻之間的相對比例關系。在相同的外頻下,倍頻越高CPU的頻率也越高。但實際上,在相同外頻的前提下,高倍頻的CPU本身意義並不大。這是因為CPU與系統之間數據傳輸速度是有限的,一味追求高倍頻而得到高主頻的CPU就會出現明顯的「瓶頸」效應—CPU從系統中得到數據的極限速度不能夠滿足CPU運算的速度。一般除了工程樣版的Intel的CPU都是鎖了倍頻的,而AMD之前都沒有鎖。
6.緩存
緩存大小也是CPU的重要指標之一,而且緩存的結構和大小對CPU速度的影響非常大,CPU內緩存的運行頻率極高,一般是和處理器同頻運作,工作效率遠遠大於系統內存和硬碟。實際工作時,CPU往往需要重復讀取同樣的數據塊,而緩存容量的增大,可以大幅度提升CPU內部讀取數據的命中率,而不用再到內存或者硬碟上尋找,以此提高系統性能。但是由於CPU晶元面積和成本的因素來考慮,緩存都很小。
L1 Cache(一級緩存)是CPU第一層高速緩存,分為數據緩存和指令緩存。內置的L1高速緩存的容量和結構對CPU的性能影響較大,不過高速緩沖存儲器均由靜態RAM組成,結構較復雜,在CPU管芯面積不能太大的情況下,L1級高速緩存的容量不可能做得太大。一般伺服器CPU的L1緩存的容量通常在32—256KB。
L2 Cache(二級緩存)是CPU的第二層高速緩存,分內部和外部兩種晶元。內部的晶元二級緩存運行速度與主頻相同,而外部的二級緩存則只有主頻的一半。L2高速緩存容量也會影響CPU的性能,原則是越大越好,現在家庭用CPU容量最大的是512KB,而伺服器和工作站上用CPU的L2高速緩存更高達256-1MB,有的高達2MB或者3MB。
L3 Cache(三級緩存),分為兩種,早期的是外置,現在的都是內置的。而它的實際作用即是,L3緩存的應用可以進一步降低內存延遲,同時提升大數據量計算時處理器的性能。降低內存延遲和提升大數據量計算能力對游戲都很有幫助。而在伺服器領域增加L3緩存在性能方面仍然有顯著的提升。比方具有較大L3緩存的配置利用物理內存會更有效,故它比較慢的磁碟I/O子系統可以處理更多的數據請求。具有較大L3緩存的處理器提供更有效的文件系統緩存行為及較短消息和處理器隊列長度。
其實最早的L3緩存被應用在AMD發布的K6-III處理器上,當時的L3緩存受限於製造工藝,並沒有被集成進晶元內部,而是集成在主板上。在只能夠和系統匯流排頻率同步的L3緩存同主內存其實差不了多少。後來使用L3緩存的是英特爾為伺服器市場所推出的Itanium處理器。接著就是P4EE和至強MP。Intel還打算推出一款9MB L3緩存的Itanium2處理器,和以後24MB L3緩存的雙核心Itanium2處理器。
但基本上L3緩存對處理器的性能提高顯得不是很重要,比方配備1MB L3緩存的Xeon MP處理器卻仍然不是Opteron的對手,由此可見前端匯流排的增加,要比緩存增加帶來更有效的性能提升。
7.CPU擴展指令集
CPU依靠指令來計算和控制系統,每款CPU在設計時就規定了一系列與其硬體電路相配合的指令系統。指令的強弱也是CPU的重要指標,指令集是提高微處理器效率的最有效工具之一。從現階段的主流體系結構講,指令集可分為復雜指令集和精簡指令集兩部分,而從具體運用看,如Intel的MMX(Multi Media Extended)、SSE、 SSE2(Streaming-Single instruction multiple data-Extensions 2)、SEE3和AMD的3DNow!等都是CPU的擴展指令集,分別增強了CPU的多媒體、圖形圖象和Internet等的處理能力。我們通常會把CPU的擴展指令集稱為"CPU的指令集"。SSE3指令集也是目前規模最小的指令集,此前MMX包含有57條命令,SSE包含有50條命令,SSE2包含有144條命令,SSE3包含有13條命令。目前SSE3也是最先進的指令集,英特爾Prescott處理器已經支持SSE3指令集,AMD會在未來雙核心處理器當中加入對SSE3指令集的支持,全美達的處理器也將支持這一指令集。
8.CPU內核和I/O工作電壓
從586CPU開始,CPU的工作電壓分為內核電壓和I/O電壓兩種,通常CPU的核心電壓小於等於I/O電壓。其中內核電壓的大小是根據CPU的生產工藝而定,一般製作工藝越小,內核工作電壓越低;I/O電壓一般都在1.6~5V。低電壓能解決耗電過大和發熱過高的問題。
9.製造工藝
製造工藝的微米是指IC內電路與電路之間的距離。製造工藝的趨勢是向密集度愈高的方向發展。密度愈高的IC電路設計,意味著在同樣大小面積的IC中,可以擁有密度更高、功能更復雜的電路設計。現在主要的180nm、130nm、90nm。最近官方已經表示有65nm的製造工藝了。