當前位置:首頁 » 存儲配置 » 分布式存儲的設計方法

分布式存儲的設計方法

發布時間: 2022-06-22 19:37:31

1. 分布式存儲技術有哪些

中央存儲技術現已發展非常成熟。但是同時,新的問題也出現了,中心化的網路很容易擁擠,數據很容易被濫用。傳統的數據傳輸方式是由客戶端向雲伺服器傳輸,由伺服器向客戶端下載。而分布式存儲系統QKFile是從客戶端傳送到 N個節點,然後從這些節點就近下載到客戶端內部,因此傳輸速度非常快。對比中心協議的特點是上傳、下載速度快,能夠有效地聚集空閑存儲資源,並能大大降低存儲成本。

在節點數量不斷增加的情況下,QKFile市場趨勢開始突出,未來用戶數量將呈指數增長。分布式存儲在未來會有很多應用場景,如數據存儲,文件傳輸,網路視頻,社會媒體和去中心化交易等。網際網路的控制權越來越集中在少數幾個大型技術公司的手中,它的網路被去中心化,就像分布式存儲一樣,總是以社區為中心,面向用戶,而分布式存儲就是實現信息技術和未來網際網路功能的遠景。有了分布式存儲,我們可以創造出更加自由、創新和民主的網路體驗。是時候把網際網路推向新階段了。

作為今年非常受歡迎的明星項目,關於QKFile的未來發展會推動互聯網的進步,給整個市場帶來巨大好處。分布式存儲是基於網際網路的基礎結構產生的,區塊鏈分布式存儲與人工智慧、大數據等有疊加作用。對今天的中心存儲是一個巨大的補充,分布式時代的到來並不是要取代現在的中心互聯網,而是要使未來的數據存儲發展得更好,給整個市場生態帶來不可想像的活力。先看共識,後看應用,QKFile創建了一個基礎設施平台,就像阿里雲,阿里雲上面是做游戲的做電商的視頻網站,這就叫應用層,現階段,在性能上,坦白說,與傳統的雲存儲相比,沒有什麼競爭力。不過另一方面來說,一個新型的去中心化存儲的信任環境式非常重要的,在此環境下,自然可以衍生出許多相關應用,市場潛力非常大。

雖然QKFile離真正的商用還有很大的距離,首先QKFile的經濟模型還沒有定論,其次QKFile需要集中精力發展分布式存儲、商業邏輯和 web3.0,只有打通分布式存儲賽道,才有實力引領整個行業發展,人們認識到了中心化存儲的弊端,還有許多企業開始接受分布式存儲模式,即分布式存儲 DAPP應用觸達用戶。所以QKFile將來肯定會有更多的商業應用。創建超本地高效存儲方式的能力。當用戶希望將數據存儲在QKFile網路上時,他們就可以擺脫巨大的集中存儲和地理位置的限制,用戶可以看到在線存儲的礦工及其市場價格,礦工之間相互競爭以贏得存儲合約。使用者挑選有競爭力的礦工,交易完成,用戶發送數據,然後礦工存儲數據,礦工必須證明數據的正確存儲才能得到QKFile獎勵。在網路中,通過密碼證明來驗證數據的存儲安全性。采礦者通過新區塊鏈向網路提交其儲存證明。通過網路發布的新區塊鏈驗證,只有正確的區塊鏈才能被接受,經過一段時間,礦工們就可以獲得交易存儲費用,並有機會得到區塊鏈獎勵。數據就在更需要它的地方傳播了,旋轉數據就在地球范圍內流動了,數據的獲取就不斷優化了,從小的礦機到大的數據中心,所有人都可以通過共同努力,為人類信息社會的建設奠定新的基礎,並從中獲益。

2. 分布式存儲是什麼

分布式存儲系統,是將數據分散存儲在多台獨立的設備上。傳統的網路存儲系統採用集中的存儲伺服器存放所有數據,存儲伺服器成為系統性能的瓶頸,也是可靠性和安全性的焦點,不能滿足大規模存儲應用的需要。分布式網路存儲系統採用可擴展的系統結構,利用多台存儲伺服器分擔存儲負荷,利用位置伺服器定位存儲信息,它不但提高了系統的可靠性、可用性和存取效率,還易於擴展。
分布式和集中式存儲
集中存儲的優缺點是,物理介質集中布放;視頻流上傳到中心對機房環境要求高,要求機房空間大,承重、空調等都是需要考慮的問題。

分布存儲,集中管理的優缺點是,物理介質分布到不同的地理位置;視頻流就近上傳,對骨幹網帶寬沒有什麼要求;可採用多套低端的小容量的存儲設備分布部署,設備價格和維護成本較低;小容量設備分布部署,對機房環境要求低。

鏈喬教育在線旗下學碩創新區塊鏈技術工作站是中國教育部學校規劃建設發展中心開展的「智慧學習工場2020-學碩創新工作站 」唯一獲準的「區塊鏈技術專業」試點工作站。專業站立足為學生提供多樣化成長路徑,推進專業學位研究生產學研結合培養模式改革,構建應用型、復合型人才培養體系。

3. 分布式存儲都有哪些,基本實現原理是什麼

vCluster分布式存儲是國內性能最佳、功能最全的分布式存儲產品,比當前流行的某開源分布式軟體功能多出100餘項,功能優化30餘項。vCluster分布式存儲系列採用先進的分布式架構,將一個任務分給多個存儲節點並行處理,大大提高了存儲效率。其堆棧性和模塊化設計提高了存儲的健碩型和擴展性,完全符合企業存儲從現在到未來的IT架構發展趨勢。

4. java解決分布式存儲計算

一、高性能計算
Hadoop:Hadoop的框架最核心的設計就是:HDFS和MapRece。HDFS為海量的數據提供了存儲,則MapRece為海量的數據提供了計算。
Spark:Spark是UC Berkeley AMP lab所開源的類Hadoop MapRece的通用的並行,Spark,擁有Hadoop MapRece所具有的優點;但不同於MapRece的是Job中間輸出結果可以保存在內存中,從而不再需要讀寫HDFS,因此Spark能更好地適用於數據挖掘與機器學習等需要迭代的map rece的演算法
CUDA:CUDA(Compute Unified Device Architecture),是顯卡廠商NVIDIA推出的運算平台。 CUDA是一種由NVIDIA推出的通用並行計算架構,該架構使GPU能夠解決復雜的計算問題。 它包含了CUDA指令集架構(ISA)以及GPU內部的並行計算引擎。 開發人員現在可以使用C語言來為CUDA架構編寫程序,C語言是應用最廣泛的一種高級編程語言。所編寫出的程序於是就可以在支持CUDA的處理器上以超高性能運行。CUDA3.0已經開始支持C++和FORTRAN。
二、Hadoop生態系統
(1)海量數據怎麼存,當然是用分布式文件系統——HDFS。
(2)數據怎麼用呢,分析、處理MapRece框架,讓你通過編寫代碼來實現對大數據的分析工作。

(3)非結構化數據(日誌)收集處理——Fuse、WebDAV、Chukwa、Flume和Scribe。

(4)數據導入HDFS中,RDBMS也可以加入HDFS的狂歡了——HIHO、Sqoop。

(5)MaoRece太麻煩,用熟悉的方式操作Hadoop里的數據——Pig、Hive、Jaql。

(6)讓你的數據可見——Drilldown、Intellicus。

(7)用高級語言管理你的任務流——Oozie、Cascading。

(8)Hadoop自己的監控管理工具——Hue、Karmasphere、Eclipse Plugin、Cacti、Ganglia。

(9)數據序列化處理與任務調度——Avro、ZooKeeper。

(10)更多構建在Hadoop上層的服務——Mahout、Elastic Map Rece。

(11)OLTP存儲系統——HBase。

(12)基於Hadoop的實時分析——Impala。

5. 如何實現企業數據 大數據平台 分布式存放

Hadoop在可伸縮性、健壯性、計算性能和成本上具有無可替代的優勢,事實上已成為當前互聯網企業主流的大數據分析平台。本文主要介紹一種基於Hadoop平台的多維分析和數據挖掘平台架構。作為一家互聯網數據分析公司,我們在海量數據的分析領域那真是被「逼上樑山」。多年來在嚴苛的業務需求和數據壓力下,我們幾乎嘗試了所有可能的大數據分析方法,最終落地於Hadoop平台之上。
1. 大數據分析大分類
Hadoop平台對業務的針對性較強,為了讓你明確它是否符合你的業務,現粗略地從幾個角度將大數據分析的業務需求分類,針對不同的具體需求,應採用不同的數據分析架構。
按照數據分析的實時性,分為實時數據分析和離線數據分析兩種。
實時數據分析一般用於金融、移動和互聯網B2C等產品,往往要求在數秒內返回上億行數據的分析,從而達到不影響用戶體驗的目的。要滿足這樣的需求,可以採用精心設計的傳統關系型資料庫組成並行處理集群,或者採用一些內存計算平台,或者採用HDD的架構,這些無疑都需要比較高的軟硬體成本。目前比較新的海量數據實時分析工具有EMC的Greenplum、SAP的HANA等。
對於大多數反饋時間要求不是那麼嚴苛的應用,比如離線統計分析、機器學習、搜索引擎的反向索引計算、推薦引擎的計算等,應採用離線分析的方式,通過數據採集工具將日誌數據導入專用的分析平台。但面對海量數據,傳統的ETL工具往往徹底失效,主要原因是數據格式轉換的開銷太大,在性能上無法滿足海量數據的採集需求。互聯網企業的海量數據採集工具,有Facebook開源的Scribe、LinkedIn開源的Kafka、淘寶開源的Timetunnel、Hadoop的Chukwa等,均可以滿足每秒數百MB的日誌數據採集和傳輸需求,並將這些數據上載到Hadoop中央系統上。
按照大數據的數據量,分為內存級別、BI級別、海量級別三種。
這里的內存級別指的是數據量不超過集群的內存最大值。不要小看今天內存的容量,Facebook緩存在內存的Memcached中的數據高達320TB,而目前的PC伺服器,內存也可以超過百GB。因此可以採用一些內存資料庫,將熱點數據常駐內存之中,從而取得非常快速的分析能力,非常適合實時分析業務。圖1是一種實際可行的MongoDB分析架構。

圖1 用於實時分析的MongoDB架構
MongoDB大集群目前存在一些穩定性問題,會發生周期性的寫堵塞和主從同步失效,但仍不失為一種潛力十足的可以用於高速數據分析的NoSQL。
此外,目前大多數服務廠商都已經推出了帶4GB以上SSD的解決方案,利用內存+SSD,也可以輕易達到內存分析的性能。隨著SSD的發展,內存數據分析必然能得到更加廣泛的應用。
BI級別指的是那些對於內存來說太大的數據量,但一般可以將其放入傳統的BI產品和專門設計的BI資料庫之中進行分析。目前主流的BI產品都有支持TB級以上的數據分析方案。種類繁多,就不具體列舉了。
海量級別指的是對於資料庫和BI產品已經完全失效或者成本過高的數據量。海量數據級別的優秀企業級產品也有很多,但基於軟硬體的成本原因,目前大多數互聯網企業採用Hadoop的HDFS分布式文件系統來存儲數據,並使用MapRece進行分析。本文稍後將主要介紹Hadoop上基於MapRece的一個多維數據分析平台。
數據分析的演算法復雜度
根據不同的業務需求,數據分析的演算法也差異巨大,而數據分析的演算法復雜度和架構是緊密關聯的。舉個例子,Redis是一個性能非常高的內存Key-Value NoSQL,它支持List和Set、SortedSet等簡單集合,如果你的數據分析需求簡單地通過排序,鏈表就可以解決,同時總的數據量不大於內存(准確地說是內存加上虛擬內存再除以2),那麼無疑使用Redis會達到非常驚人的分析性能。
還有很多易並行問題(Embarrassingly Parallel),計算可以分解成完全獨立的部分,或者很簡單地就能改造出分布式演算法,比如大規模臉部識別、圖形渲染等,這樣的問題自然是使用並行處理集群比較適合。
而大多數統計分析,機器學習問題可以用MapRece演算法改寫。MapRece目前最擅長的計算領域有流量統計、推薦引擎、趨勢分析、用戶行為分析、數據挖掘分類器、分布式索引等。
2. 面對大數據OLAP大一些問題

OLAP分析需要進行大量的數據分組和表間關聯,而這些顯然不是NoSQL和傳統資料庫的強項,往往必須使用特定的針對BI優化的資料庫。比如絕大多數針對BI優化的資料庫採用了列存儲或混合存儲、壓縮、延遲載入、對存儲數據塊的預統計、分片索引等技術。

Hadoop平台上的OLAP分析,同樣存在這個問題,Facebook針對Hive開發的RCFile數據格式,就是採用了上述的一些優化技術,從而達到了較好的數據分析性能。如圖2所示。
然而,對於Hadoop平台來說,單單通過使用Hive模仿出SQL,對於數據分析來說遠遠不夠,首先Hive雖然將HiveQL翻譯MapRece的時候進行了優化,但依然效率低下。多維分析時依然要做事實表和維度表的關聯,維度一多性能必然大幅下降。其次,RCFile的行列混合存儲模式,事實上限制死了數據格式,也就是說數據格式是針對特定分析預先設計好的,一旦分析的業務模型有所改動,海量數據轉換格式的代價是極其巨大的。最後,HiveQL對OLAP業務分析人員依然是非常不友善的,維度和度量才是直接針對業務人員的分析語言。
而且目前OLAP存在的最大問題是:業務靈活多變,必然導致業務模型隨之經常發生變化,而業務維度和度量一旦發生變化,技術人員需要把整個Cube(多維立方體)重新定義並重新生成,業務人員只能在此Cube上進行多維分析,這樣就限制了業務人員快速改變問題分析的角度,從而使所謂的BI系統成為死板的日常報表系統。
使用Hadoop進行多維分析,首先能解決上述維度難以改變的問題,利用Hadoop中數據非結構化的特徵,採集來的數據本身就是包含大量冗餘信息的。同時也可以將大量冗餘的維度信息整合到事實表中,這樣可以在冗餘維度下靈活地改變問題分析的角度。其次利用Hadoop MapRece強大的並行化處理能力,無論OLAP分析中的維度增加多少,開銷並不顯著增長。換言之,Hadoop可以支持一個巨大無比的Cube,包含了無數你想到或者想不到的維度,而且每次多維分析,都可以支持成千上百個維度,並不會顯著影響分析的性能。


而且目前OLAP存在的最大問題是:業務靈活多變,必然導致業務模型隨之經常發生變化,而業務維度和度量一旦發生變化,技術人員需要把整個Cube(多維立方體)重新定義並重新生成,業務人員只能在此Cube上進行多維分析,這樣就限制了業務人員快速改變問題分析的角度,從而使所謂的BI系統成為死板的日常報表系統。
3. 一種Hadoop多維分析平台的架構
整個架構由四大部分組成:數據採集模塊、數據冗餘模塊、維度定義模塊、並行分 析模塊。

數據採集模塊採用了Cloudera的Flume,將海量的小日誌文件進行高速傳輸和合並,並能夠確保數據的傳輸安全性。單個collector宕機之後,數據也不會丟失,並能將agent數據自動轉移到其他的colllecter處理,不會影響整個採集系統的運行。如圖5所示。

數據冗餘模塊不是必須的,但如果日誌數據中沒有足夠的維度信息,或者需要比較頻繁地增加維度,則需要定義數據冗餘模塊。通過冗餘維度定義器定義需要冗餘的維度信息和來源(資料庫、文件、內存等),並指定擴展方式,將信息寫入數據日誌中。在海量數據下,數據冗餘模塊往往成為整個系統的瓶頸,建議使用一些比較快的內存NoSQL來冗餘原始數據,並採用盡可能多的節點進行並行冗餘;或者也完全可以在Hadoop中執行批量Map,進行數據格式的轉化。

維度定義模塊是面向業務用戶的前端模塊,用戶通過可視化的定義器從數據日誌中定義維度和度量,並能自動生成一種多維分析語言,同時可以使用可視化的分析器通過GUI執行剛剛定義好的多維分析命令。
並行分析模塊接受用戶提交的多維分析命令,並將通過核心模塊將該命令解析為Map-Rece,提交給Hadoop集群之後,生成報表供報表中心展示。
核心模塊是將多維分析語言轉化為MapRece的解析器,讀取用戶定義的維度和度量,將用戶的多維分析命令翻譯成MapRece程序。核心模塊的具體邏輯如圖6所示。

圖6中根據JobConf參數進行Map和Rece類的拼裝並不復雜,難點是很多實際問題很難通過一個MapRece Job解決,必須通過多個MapRece Job組成工作流(WorkFlow),這里是最需要根據業務進行定製的部分。圖7是一個簡單的MapRece工作流的例子。

MapRece的輸出一般是統計分析的結果,數據量相較於輸入的海量數據會小很多,這樣就可以導入傳統的數據報表產品中進行展現。

6. 什麼是HDFS硬碟分布式存儲

Namenode 是一個中心伺服器,單一節點(簡化系統的設計和實現),負責管理文件系統的名字空間(namespace)以及客戶端對文件的訪問
文件操作,NameNode 負責文件元數據的操作,DataNode負責處理文件內容的讀寫請求,跟文件內容相關的數據流不經過NameNode,只會詢問它跟哪個DataNode聯系,否則NameNode會成為系統的瓶頸。
副本存放在哪些DataNode上由 NameNode來控制,根據全局情況做出塊放置決定,讀取文件時NameNode盡量讓用戶先讀取最近的副本,降低帶塊消耗和讀取時延
Namenode 全權管理數據塊的復制,它周期性地從集群中的每個Datanode接收心跳信號和塊狀態報告(Blockreport)。接收到心跳信號意味著該Datanode節點工作正常。塊狀態報告包含了一個該Datanode上所有數據塊的列表。

NameNode支持對HDFS中的目錄、文件和塊做類似文件系統的創建、修改、刪除、列表文件和目錄等基本操作。 塊存儲管理,在整個HDFS集群中有且只有唯一一個處於active狀態NameNode節點,該節點負責對這個命名空間(HDFS)進行管理。

1、Name啟動的時候首先將fsimage(鏡像)載入內存,並執行(replay)編輯日誌editlog的的各項操作;
2、一旦在內存中建立文件系統元數據映射,則創建一個新的fsimage文件(這個過程不需SecondaryNameNode) 和一個空的editlog;
3、在安全模式下,各個datanode會向namenode發送塊列表的最新情況;
4、此刻namenode運行在安全模式。即NameNode的文件系統對於客服端來說是只讀的。(顯示目錄,顯示文件內容等。寫、刪除、重命名都會失敗);
5、NameNode開始監聽RPC和HTTP請求
解釋RPC:RPC(Remote Procere Call Protocol)——遠程過程通過協議,它是一種通過網路從遠程計算機程序上請求服務,而不需要了解底層網路技術的協議;
6、系統中數據塊的位置並不是由namenode維護的,而是以塊列表形式存儲在datanode中;
7、在系統的正常操作期間,namenode會在內存中保留所有塊信息的映射信息。
存儲文件,文件被分成block存儲在磁碟上,為保證數據安全,文件會有多個副本 namenode和client的指令進行存儲或者檢索block,並且周期性的向namenode節點報告它存了哪些文件的blo
文件切分成塊(默認大小128M),以塊為單位,每個塊有多個副本存儲在不同的機器上,副本數可在文件生成時指定(默認3)
NameNode 是主節點,存儲文件的元數據如文件名,文件目錄結構,文件屬性(生成時間,副本數,文件許可權),以及每個文件的塊列表以及塊所在的DataNode等等
DataNode 在本地文件系統存儲文件塊數據,以及塊數據的校驗和。
可以創建、刪除、移動或重命名文件,當文件創建、寫入和關閉之後不能修改文件內容。

NameNode啟動流程
1、Name啟動的時候首先將fsimage(鏡像)載入內存,並執行(replay)編輯日誌editlog的的各項操作;
2、一旦在內存中建立文件系統元數據映射,則創建一個新的fsimage文件(這個過程不需SecondaryNameNode) 和一個空的editlog;
3、在安全模式下,各個datanode會向namenode發送塊列表的最新情況;
4、此刻namenode運行在安全模式。即NameNode的文件系統對於客服端來說是只讀的。(顯示目錄,顯示文件內容等。寫、刪除、重命名都會失敗);
5、NameNode開始監聽RPC和HTTP請求
解釋RPC:RPC(Remote Procere Call Protocol)——遠程過程通過協議,它是一種通過網路從遠程計算機程序上請求服務,而不需要了解底層網路技術的協議;
6、系統中數據塊的位置並不是由namenode維護的,而是以塊列表形式存儲在datanode中;
7、在系統的正常操作期間,namenode會在內存中保留所有塊信息的映射信息。
HDFS的特點

優點:
1)處理超大文件
這里的超大文件通常是指百MB、數百TB大小的文件。目前在實際應用中,HDFS已經能用來存儲管理PB級的數據了。

2)流式的訪問數據
HDFS的設計建立在更多地響應"一次寫入、多次讀取"任務的基礎上。這意味著一個數據集一旦由數據源生成,就會被復制分發到不同的存儲節點中,然後響應各種各樣的數據分析任務請求。在多數情況下,分析任務都會涉及數據集中的大部分數據,也就是說,對HDFS來說,請求讀取整個數據集要比讀取一條記錄更加高效。

3)運行於廉價的商用機器集群上
Hadoop設計對硬體需求比較低,只須運行在低廉的商用硬體集群上,而無需昂貴的高可用性機器上。廉價的商用機也就意味著大型集群中出現節點故障情況的概率非常高。這就要求設計HDFS時要充分考慮數據的可靠性,安全性及高可用性。

缺點:
1)不適合低延遲數據訪問
如果要處理一些用戶要求時間比較短的低延遲應用請求,則HDFS不適合。HDFS是為了處理大型數據集分析任務的,主要是為達到高的數據吞吐量而設計的,這就可能要求以高延遲作為代價。

2)無法高效存儲大量小文件
因為Namenode把文件系統的元數據放置在內存中,所以文件系統所能容納的文件數目是由Namenode的內存大小來決定。一般來說,每一個文件、文件夾和Block需要佔據150位元組左右的空間,所以,如果你有100萬個文件,每一個占據一個Block,你就至少需要300MB內存。當前來說,數百萬的文件還是可行的,當擴展到數十億時,對於當前的硬體水平來說就沒法實現了。還有一個問題就是,因為Map task的數量是由splits來決定的,所以用MR處理大量的小文件時,就會產生過多的Maptask,線程管理開銷將會增加作業時間。舉個例子,處理10000M的文件,若每個split為1M,那就會有10000個Maptasks,會有很大的線程開銷;若每個split為100M,則只有100個Maptasks,每個Maptask將會有更多的事情做,而線程的管理開銷也將減小很多。

1280M 1個文件 10block*150位元組 = 1500 位元組 =1.5KB
1280M 12.8M 100個 100個block*150位元組 = 15000位元組 = 15KB

3)不支持多用戶寫入及任意修改文件
在HDFS的一個文件中只有一個寫入者,而且寫操作只能在文件末尾完成,即只能執行追加操作。目前HDFS還不支持多個用戶對同一文件的寫操作,以及在文件任意位置進行修改。

四、HDFS文件 讀寫流程
4.1 讀文件流程

(1) 打開分布式文件
調用 分布式文件 DistributedFileSystem.open()方法。
(2) 從 NameNode 獲得 DataNode 地址
DistributedFileSystem 使用 RPC 調用 NameNode, NameNode返回存有該副本的 DataNode 地址, DistributedFileSystem 返回一個輸入流 FSDataInputStream對象, 該對象封存了輸入流DFSInputStream。
(3) 連接到DataNode
調用 輸入流 FSDataInputStream 的 read() 方法, 從而輸入流DFSInputStream 連接 DataNodes。
(4) 讀取DataNode
反復調用 read()方法, 從而將數據從 DataNode 傳輸到客戶端。
(5) 讀取另外的DataNode直到完成
到達塊的末端時候, 輸入流 DFSInputStream 關閉與DataNode 連接,尋找下一個 DataNode。
(6) 完成讀取, 關閉連接
即調用輸入流 FSDataInputStream.close() 。

4.2 寫文件流程

(1) 發送創建文件請求: 調用分布式文件系統DistributedFileSystem.create()方法;
(2) NameNode中創建文件記錄: 分布式文件系統DistributedFileSystem 發送 RPC 請求給namenode, namenode 檢查許可權後創建一條記錄, 返回輸出流 FSDataOutputStream, 封裝了輸出流 DFSOutputDtream;
(3) 客戶端寫入數據: 輸出流 DFSOutputDtream 將數據分成一個個的數據包, 並寫入內部隊列。 DataStreamer 根據 DataNode 列表來要求 namenode 分配適合的新塊來存儲數據備份。一組DataNode 構成管線(管線的 DataNode 之間使用 Socket 流式通信)
(4) 使用管線傳輸數據: DataStreamer 將數據包流式傳輸到管線第一個DataNode, 第一個DataNode 再傳到第二個DataNode ,直到完成。
(5) 確認隊列: DataNode 收到數據後發送確認, 管線的DataNode所有的確認組成一個確認隊列。 所有DataNode 都確認, 管線數據包刪除。
(6) 關閉: 客戶端對數據量調用close() 方法。 將剩餘所有數據寫入DataNode管線, 並聯系NameNode且發送文件寫入完成信息之前等待確認。
(7) NameNode確認
(8) 故障處理: 若過程中發生故障, 則先關閉管線, 把隊列中所有數據包添加回去隊列, 確保數據包不漏。 為另一個正常DataNode的當前數據塊指定一個新的標識, 並將該標識傳送給NameNode, 一遍故障DataNode在恢復後刪除上面的不完整數據塊. 從管線中刪除故障DataNode 並把餘下的數據塊寫入餘下正常的DataNode。 NameNode發現復本兩不足時, 會在另一個節點創建一個新的復本

7. 軟體定義存儲和分布式存儲是什麼關系

什麼是分布式存儲

關於分布式存儲實際上並沒有一個明確的定義,甚至名稱上也沒有一個統一的說法,大多數情況下稱作 Distributed Data Store 或者 Distributed Storage System。

其中維基網路中給 Distributed data store 的定義是:分布式存儲是一種計算機網路,它通常以數據復制的方式將信息存儲在多個節點中。

在網路中給出的定義是:分布式存儲系統,是將數據分散存儲在多台獨立的設備上。分布式網路存儲系統採用可擴展的系統結構,利用多台存儲伺服器分擔存儲負荷,利用位置伺服器定位存儲信息,它不但提高了系統的可靠性、可用性和存取效率,還易於擴展。

盡管各方對分布式存儲的定義並不完全相同,但有一點是統一的,就是分布式存儲將數據分散放置在多個節點中,節點通過網路互連提供存儲服務。這一點與傳統集中式存儲將數據集中放置的方式有著明顯的區分。

什麼是軟體定義存儲

SDS 的全稱是 Software Defined Storage ,字面意思直譯就是軟體定義存儲。關於 SDS 的定義可以參考全球網路存儲工業協會(Storage Networking Instry Association,SNIA),SINA 在 2013 正式把 軟體定義存儲(SDS) 列入研究對象。

SINA 對軟體定義存儲(SDS) 的定義是:一種具備服務管理介面的虛擬化存儲。 SDS 包括存儲池化的功能,並可通過服務管理介面定義存儲池的數據服務特徵。另外 SINA 還提出 軟體定義存儲(SDS) 應該具備以下特性:

  • 自動化程度高 – 通過簡化管理,降低存儲基礎架構的運維開銷

  • 標准介面 – 支持 API 管理、發布和運維存儲設備和服務

  • 虛擬化數據路徑 – 支持多種標准協議,允許應用通過塊存儲,文件存儲或者對象存儲介面寫入數據

  • 擴展性 – 存儲架構具備無縫擴展規模的能力,擴展過程不影響可用性以及不會導致性能下降

  • 透明度 – 存儲應為用戶提供管理和監控存儲的可用資源與開銷

分布式存儲與軟體定義存儲的區別與聯系

軟體定義存儲(SDS) 的著重點在於存儲資源虛擬化和軟體定義,首先在形態上,軟體定義存儲(SDS)區別於傳統的「硬體定義」存儲,它不依賴專屬的硬體,可以讓存儲軟體運行在通用伺服器上,可避免硬體綁定以及有效降低硬體采購成本;擁有標准 API 介面和自動化工具,有效降低運維難度。存儲資源虛擬化,支持多種存儲協議,可整合企業存儲資源,提升存儲資源利用率。但從定義上來說,但 軟體定義存儲(SDS) 從部署形式上來看,並不一定是分布式或者是集中式的,也就是說 SDS 不一定是分布式存儲(雖然常見的 軟體定義存儲(SDS) 更多的是分布式的),SDS 存儲內部有可能是單機運行的,不通過網路分散存放數據的,這種形式的軟體定義存儲(SDS) 的擴展性就可能有比較大的局限。

分布式存儲,它的最大特點是多節點部署, 數據通過網路分散放置。分布式存儲的特點是擴展性強,通過多節點平衡負載,提高存儲系統的可靠性與可用性。與 軟體定義存儲(SDS)相反,分布式存儲不一定是軟體定義的,有可能是綁定硬體的,例如 IBM XIV 存儲,它本質上是一個分布式存儲,但實際是通過專用硬體進行交付的。那麼就依然存在硬體綁定,擁有成本較高的問題。

8. 什麼是分布式存儲系統

分布式存儲系統,是將數據分散存儲在多台獨立的設備上。傳統的網路存儲系統採用集中的存儲伺服器存放所有數據,存儲伺服器成為系統性能的瓶頸,也是可靠性和安全性的焦點,不能滿足大規模存儲應用的需要。分布式網路存儲系統採用可擴展的系統結構,利用多台存儲伺服器分擔存儲負荷,利用位置伺服器定位存儲信息,它不但提高了系統的可靠性、可用性和存取效率,還易於擴展。


(8)分布式存儲的設計方法擴展閱讀:

分布式存儲,集中管理,在這個方案中,共有三級:

1、上級監控中心:上級監控中心通常只有一個,主要由數字矩陣、認證伺服器和VSTARClerk軟體等。

2、本地監控中心:本地監控中心可以有多個,可依據地理位置設置,或者依據行政隸屬關系設立,主要由數字矩陣、流媒體網關、iSCSI存儲設備、VSTARRecorder軟體等組成;音視頻的數據均主要保存在本地監控中心,這就是分布式存儲的概念。

3、監控前端:主要由攝像頭、網路視頻伺服器組成,其中VE4000系列的網路視頻伺服器可以帶硬碟,該硬碟主要是用於網路不暢時,暫時對音視頻數據進行保存,或者需要在前端保存一些重要數據的情況。

9. 傳統存儲就是NAS等存儲嗎分布式存儲是新的存儲方式嗎

傳統的一篇有ISCSI存儲、NAS存儲、光纖存儲等。你可以去存儲廠商(正睿存儲)的網上看看產品,篩選一下,幾分鍾就清楚了!

10. 分布式存儲系統架構設計,應該遵循什麼樣的原則

分布式存儲分很多類型啊,對稱/非對稱 並行IO/串列IO,不同需求有不同架構思路。沒有設計目標不要談原則。

熱點內容
fiddler源碼 發布:2025-01-08 00:09:21 瀏覽:882
sql資料庫ppt 發布:2025-01-08 00:08:00 瀏覽:156
手機怎麼用伺服器的ip 發布:2025-01-07 23:57:08 瀏覽:872
區域網伺服器ip怎麼設置 發布:2025-01-07 23:57:07 瀏覽:792
天津的dns伺服器地址雲空間 發布:2025-01-07 23:47:37 瀏覽:302
筆記本電腦檢測不到dns伺服器 發布:2025-01-07 23:42:44 瀏覽:660
linux編譯器開啟快捷鍵 發布:2025-01-07 23:22:01 瀏覽:843
安卓支架鍵盤怎麼用 發布:2025-01-07 23:22:00 瀏覽:170
腳本計算時間 發布:2025-01-07 23:04:20 瀏覽:644
標准件都有哪些配置 發布:2025-01-07 22:51:51 瀏覽:143