當前位置:首頁 » 存儲配置 » 海量日誌存儲

海量日誌存儲

發布時間: 2022-06-05 10:03:38

① 海量日誌分析怎麼處理

海量日誌分析有這幾個關鍵問題zd:
1、採集海量日誌(對技術、性能是考驗)
2、採集後的數據結構化及存儲(後期完成高復雜度的分析)
3、最後才是海量日誌數據的搜索分析
實現海量日誌分析,目前採用較多的方式是日誌易、ELK等。
兩者的區別點在於一個屬於商業化產品(簡單配置、操作方便、功能強大、靈活等),ELK產品則是開源(免費、需要部署多個產品、需要二次開發、耗費人工成本)。

② 如何處理海量數據

在實際的工作環境下,許多人會遇到海量數據這個復雜而艱巨的問題,它的主要難點有以下幾個方面:
一、數據量過大,數據中什麼情況都可能存在。
如果說有10條數據,那麼大不了每條去逐一檢查,人為處理,如果有上百條數據,也可以考慮,如果數據上到千萬級別,甚至 過億,那不是手工能解決的了,必須通過工具或者程序進行處理,尤其海量的數據中,什麼情況都可能存在,例如,數據中某處格式出了問題,尤其在程序處理時, 前面還能正常處理,突然到了某個地方問題出現了,程序終止了。
二、軟硬體要求高,系統資源佔用率高。
對海量的數據進行處理,除了好的方法,最重要的就是合理使用工具,合理分配系統資源。一般情況,如果處理的數據過TB級,小型機是要考慮的,普通的機子如果有好的方法可以考慮,不過也必須加大CPU和內存,就象面對著千軍萬馬,光有勇氣沒有一兵一卒是很難取勝的。
三、要求很高的處理方法和技巧。
這也是本文的寫作目的所在,好的處理方法是一位工程師長期工作經驗的積累,也是個人的經驗的總結。沒有通用的處理方法,但有通用的原理和規則。
下面我們來詳細介紹一下處理海量數據的經驗和技巧:
一、選用優秀的資料庫工具
現在的資料庫工具廠家比較多,對海量數據的處理對所使用的資料庫工具要求比較高,一般使用Oracle或者DB2,微軟 公司最近發布的SQL Server 2005性能也不錯。另外在BI領域:資料庫,數據倉庫,多維資料庫,數據挖掘等相關工具也要進行選擇,象好的ETL工具和好的OLAP工具都十分必要, 例如Informatic,Eassbase等。筆者在實際數據分析項目中,對每天6000萬條的日誌數據進行處理,使用SQL Server 2000需要花費6小時,而使用SQL Server 2005則只需要花費3小時。
二、編寫優良的程序代碼
處理數據離不開優秀的程序代碼,尤其在進行復雜數據處理時,必須使用程序。好的程序代碼對數據的處理至關重要,這不僅僅是數據處理准確度的問題,更是數據處理效率的問題。良好的程序代碼應該包含好的演算法,包含好的處理流程,包含好的效率,包含好的異常處理機制等。
三、對海量數據進行分區操作
對海量數據進行分區操作十分必要,例如針對按年份存取的數據,我們可以按年進行分區,不同的資料庫有不同的分區方式,不 過處理機制大體相同。例如SQL Server的資料庫分區是將不同的數據存於不同的文件組下,而不同的文件組存於不同的磁碟分區下,這樣將數據分散開,減小磁碟I/O,減小了系統負荷, 而且還可以將日誌,索引等放於不同的分區下。
四、建立廣泛的索引
對海量的數據處理,對大表建立索引是必行的,建立索引要考慮到具體情況,例如針對大表的分組、排序等欄位,都要建立相應 索引,一般還可以建立復合索引,對經常插入的表則建立索引時要小心,筆者在處理數據時,曾經在一個ETL流程中,當插入表時,首先刪除索引,然後插入完 畢,建立索引,並實施聚合操作,聚合完成後,再次插入前還是刪除索引,所以索引要用到好的時機,索引的填充因子和聚集、非聚集索引都要考慮。
五、建立緩存機制
當數據量增加時,一般的處理工具都要考慮到緩存問題。緩存大小設置的好差也關繫到數據處理的成敗,例如,筆者在處理2億條數據聚合操作時,緩存設置為100000條/Buffer,這對於這個級別的數據量是可行的。
六、加大虛擬內存
如果系統資源有限,內存提示不足,則可以靠增加虛擬內存來解決。筆者在實際項目中曾經遇到針對18億條的數據進行處理, 內存為1GB,1個P42.4G的CPU,對這么大的數據量進行聚合操作是有問題的,提示內存不足,那麼採用了加大虛擬內存的方法來解決,在6塊磁碟分區 上分別建立了6個4096M的磁碟分區,用於虛擬內存,這樣虛擬的內存則增加為 4096*6 + 1024 =25600 M,解決了數據處理中的內存不足問題。
七、分批處理
海量數據處理難因為數據量大,那麼解決海量數據處理難的問題其中一個技巧是減少數據量。可以對海量數據分批處理,然後處 理後的數據再進行合並操作,這樣逐個擊破,有利於小數據量的處理,不至於面對大數據量帶來的問題,不過這種方法也要因時因勢進行,如果不允許拆分數據,還 需要另想辦法。不過一般的數據按天、按月、按年等存儲的,都可以採用先分後合的方法,對數據進行分開處理。
八、使用臨時表和中間表
數據量增加時,處理中要考慮提前匯總。這樣做的目的是化整為零,大表變小表,分塊處理完成後,再利用一定的規則進行合 並,處理過程中的臨時表的使用和中間結果的保存都非常重要,如果對於超海量的數據,大表處理不了,只能拆分為多個小表。如果處理過程中需要多步匯總操作, 可按匯總步驟一步步來,不要一條語句完成,一口氣吃掉一個胖子。
九、優化查詢SQL語句
在對海量數據進行查詢處理過程中,查詢的SQL語句的性能對查詢效率的影響是非常大的,編寫高效優良的SQL腳本和存儲 過程是資料庫工作人員的職責,也是檢驗資料庫工作人員水平的一個標准,在對SQL語句的編寫過程中,例如減少關聯,少用或不用游標,設計好高效的資料庫表 結構等都十分必要。筆者在工作中試著對1億行的數據使用游標,運行3個小時沒有出結果,這是一定要改用程序處理了。
十、使用文本格式進行處理
對一般的數據處理可以使用資料庫,如果對復雜的數據處理,必須藉助程序,那麼在程序操作資料庫和程序操作文本之間選擇, 是一定要選擇程序操作文本的,原因為:程序操作文本速度快;對文本進行處理不容易出錯;文本的存儲不受限制等。例如一般的海量的網路日誌都是文本格式或者 csv格式(文本格式),對它進行處理牽扯到數據清洗,是要利用程序進行處理的,而不建議導入資料庫再做清洗。
十一、定製強大的清洗規則和出錯處理機制
海量數據中存在著不一致性,極有可能出現某處的瑕疵。例如,同樣的數據中的時間欄位,有的可能為非標準的時間,出現的原因可能為應用程序的錯誤,系統的錯誤等,這是在進行數據處理時,必須制定強大的數據清洗規則和出錯處理機制。
十二、建立視圖或者物化視圖
視圖中的數據來源於基表,對海量數據的處理,可以將數據按一定的規則分散到各個基表中,查詢或處理過程中可以基於視圖進行,這樣分散了磁碟I/O,正如10根繩子吊著一根柱子和一根吊著一根柱子的區別。
十三、避免使用32位機子(極端情況)
目前的計算機很多都是32位的,那麼編寫的程序對內存的需要便受限制,而很多的海量數據處理是必須大量消耗內存的,這便要求更好性能的機子,其中對位數的限制也十分重要。
十四、考慮操作系統問題
海量數據處理過程中,除了對資料庫,處理程序等要求比較高以外,對操作系統的要求也放到了重要的位置,一般是必須使用伺服器的,而且對系統的安全性和穩定性等要求也比較高。尤其對操作系統自身的緩存機制,臨時空間的處理等問題都需要綜合考慮。
十五、使用數據倉庫和多維資料庫存儲
數據量加大是一定要考慮OLAP的,傳統的報表可能5、6個小時出來結果,而基於Cube的查詢可能只需要幾分鍾,因此處理海量數據的利器是OLAP多維分析,即建立數據倉庫,建立多維數據集,基於多維數據集進行報表展現和數據挖掘等。
十六、使用采樣數據,進行數據挖掘
基於海量數據的數據挖掘正在逐步興起,面對著超海量的數據,一般的挖掘軟體或演算法往往採用數據抽樣的方式進行處理,這樣 的誤差不會很高,大大提高了處理效率和處理的成功率。一般采樣時要注意數據的完整性和,防止過大的偏差。筆者曾經對1億2千萬行的表數據進行采樣,抽取出 400萬行,經測試軟體測試處理的誤差為千分之五,客戶可以接受。
還有一些方法,需要在不同的情況和場合下運用,例如使用代理鍵等操作,這樣的好處是加快了聚合時間,因為對數值型的聚合比對字元型的聚合快得多。類似的情況需要針對不同的需求進行處理。
海量數據是發展趨勢,對數據分析和挖掘也越來越重要,從海量數據中提取有用信息重要而緊迫,這便要求處理要准確,精度要高,而且處理時間要短,得到有價值信息要快,所以,對海量數據的研究很有前途,也很值得進行廣泛深入的研究。

③ 如何進行大文件日誌內容監控

大數據時代,誰掌握了足夠的數據,誰就有可能掌握未來,而其中的數據採集就是將來的流動資產積累。幾乎任何規模企業,每時每刻也都在產生大量的數據,但這些數據如何歸集、提煉始終是一個困擾。而大數據技術的意義確實不在於掌握規模龐大的數據信息,而在於對這些數據進行智能處理,從中分析和挖掘出有價值的信息,但前提是如何獲取大量有價值的數據。在最近的工作當中,本人剛好實現了運用大數據技術分析網站訪問日誌的方案,整個方案包括對網站日誌的採集、清洗、存儲和統計分析,計劃通過幾篇文章將技術實現細節分享出來,以期引起的思考和討論。網站訪問日誌介紹相信很多做過網站管理的人對網站訪問日誌(AccessLog)應該不會陌生,現在主流的網站伺服器(如apache,tomcat,ngxin等)都支持將日誌數據記錄到伺服器的日誌文件中。網站的訪問日誌中記錄了很多有用的信息,比如正常用戶的訪問足跡、惡意搗亂的足跡、用戶的入站方式、出站頁面等等信息。對以上信息匯總分類後,可以得到更有價值的東西,比如可以得到搜索引擎的抓取頻率和來訪時間段、可以得到哪些頁面是用戶熱搜的等等。首先看一個訪問日誌的例子:10.52.10.49--[17/Sep/2014:11:34:21+0800]"GET/webappHTTP/1.1"302-"-""Mozilla/5.0(WindowsNT6.1;WOW64)AppleWebKit/537.36(KHTML,likeGecko)Chrome/37.0.2062.120Safari/537.36"這是一個combined格式的訪問日誌,裡面記錄了用戶的訪問ip、時間、訪問地址、來源地址等。如要了解具體的格式說明,請查看相關資料。日誌採集存儲方案對於一個比較活躍的網站來說,訪問日誌將會是一個海量的數據,考慮到網站日誌更新頻繁、和海量數據的特點,我選擇了Flume+HBase的採集和存儲方案。FlumeFlume最早是Cloudera提供的日誌收集系統,目前是Apache下的一個項目,Flume支持在日誌系統中定製各類數據發送方,用於收集數據。Flume提供對數據進行簡單處理,並寫到各種數據接受方(可定製)的能力Flume提供了從console(控制台)、RPC(Thrift-RPC)、text(文件)、tail(UNIXtail)、syslog(syslog日誌系統,支持TCP和UDP等2種模式),exec(命令執行)等數據源上收集數據的能力。HBaseHBase–HadoopDatabase,是一個高可靠性、高性能、面向列、可伸縮的分布式存儲系統,利用HBase技術可在廉價PCServer上搭建起大規模結構化存儲集群。本次方案以Tomcat為Web伺服器,通過Flume實時監控網站的日誌文件並將新增日誌收集、清洗並保存到HBase中,供Spark等分布計算框架分析使用等。方案實現前提條件:已經在linux伺服器上安裝並啟動了相關的程序:Tomcat7,Hadoop2.4.1,Zookeeper3.4.6,HBase0.98.5,Flume1.5。具體安裝步驟請自行查看相關文檔。1.首先開啟Tomcat中的日誌記錄功能,並選擇combined格式。修改TOMCAT_PATH/conf/server.xml,增加日誌記錄:這樣,tomcat就會在logs目錄下每天生成localhost_access_log文件並實時記錄用戶的訪問情況。2.實現日誌文件對象和解析程序AccessLog.java:publicclassAccessLog{privateStringclientIp;privateStringclientIndentity;privateStringremoteUser;privateDatedateTime;privateStringrequest;privateStringhttpStatusCode;privateStringbytesSent;privateStringreferer;privateStringuserAgent;…}AccessLogParser.java:publicclassAccessLogParser{privatestaticStringpattern="^([\\d.]+)(\\S+)(\\S+)\\[([\\w:/]+\\s[+\\-]\\d{4})\\]\"(.+?)\"(\\d{3})(\\d+|-)\"([^\"]+)\"\"([^\"]+)\"";privatestaticPatternp=Pattern.compile(pattern);publicstaticAccessLogparse(Stringline){Matchermatcher=p.matcher(line);if(matcher.matches()){AccessLogaccessLog=newAccessLog();accessLog.setClientIp(matcher.group(1));accessLog.setClientIndentity(matcher.group(2));accessLog.setRemoteUser(matcher.group(3));accessLog.setDateTime(getDateTime(matcher.group(4)));accessLog.setRequest(matcher.group(5));accessLog.setHttpStatusCode(matcher.group(6));accessLog.setBytesSent(matcher.group(7));accessLog.setReferer(matcher.group(8));accessLog.setUserAgent(matcher.group(9));returnaccessLog;}logger.warn(",ignoredit.--"+line);returnnull;}3.通過HBaseShell在HBase中建立相應的表access_log執行:$HBASE_HOME/bin/hbaseshell,進入shell命令行create'access_log','cb',創建access_log,和一個列族cb。因為hbase是一個列伺服器,一個列族中可以增加很多列,為了性能考慮,一般不要創建多於三個列族。出現如下提示信息,即創建成功0row(s)in11.9690seconds=>Hbase::Table-access_log可以通過list命令查看資料庫中的表,或scan『access_log』,查看錶中數據4.配置Flume,實現採集和存儲在本方案中,我們要將數據存儲到HBase中,所以使用flume中提供的hbasesink,同時,為了清洗轉換日誌數據,我們實現自己的AsyncHbaseEventSerializer。

④ 態勢感知,懂的人不用解釋,現在對於態勢感知更多的是信息網路的安全態勢感知,

配電自動化

⑤ 如何進行java海量數據處理,下面一段是我摘抄的問題及處理方法

你理解應該錯了吧,即使再怎麼分布不均,他求出來的都是每個文件中訪問次數最多的,所有的都是最大的情況下做比較之後,得到的值一定是最大的啊,還是說每個IP的登錄記錄都不在同一個文件中?如果是這樣的話,那麼這樣做應該得不到一個精確的結果。
我是個菜鳥,本來想圍觀的。。。
但是我感覺樓主的問題用BitMap演算法應該是可以解決的。BloomFilter也可以,但是會誤判,有大神看見了而且覺得我說的不對的話勿噴,我不是很懂大數據量開發。

⑥ 海量數據分析處理方法

海量數據分析處理方法
一、Bloom filter
適用范圍:可以用來實現數據字典,進行數據的判重,或者集合求交集
基本原理及要點:
對於原理來說很簡單,位數組+k個獨立hash函數。將hash函數對應的值的位數組置1,查找時如果發現所有hash函數對應位都是1說明存在,很明顯這個過程並不保證查找的結果是100%正確的。同時也不支持刪除一個已經插入的關鍵字,因為該關鍵字對應的位會牽動到其他的關鍵字。所以一個簡單的改進就是 counting Bloom filter,用一個counter數組代替位數組,就可以支持刪除了。
還有一個比較重要的問題,如何根據輸入元素個數n,確定位數組m的大小及hash函數個數。當hash函數個數k=(ln2)*(m/n)時錯誤率最小。在錯誤率不大於E的情況下,m至少要等於n*lg(1/E)才能表示任意n個元素的集合。但m還應該更大些,因為還要保證bit數組里至少一半為0,則m應該>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2為底的對數)。
舉個例子我們假設錯誤率為0.01,則此時m應大概是n的13倍。這樣k大概是8個。
注意這里m與n的單位不同,m是bit為單位,而n則是以元素個數為單位(准確的說是不同元素的個數)。通常單個元素的長度都是有很多bit的。所以使用bloom filter內存上通常都是節省的。
擴展:
Bloom filter將集合中的元素映射到位數組中,用k(k為哈希函數個數)個映射位是否全1表示元素在不在這個集合中。Counting bloom filter(CBF)將位數組中的每一位擴展為一個counter,從而支持了元素的刪除操作。Spectral Bloom Filter(SBF)將其與集合元素的出現次數關聯。SBF採用counter中的最小值來近似表示元素的出現頻率。
問題實例:給你A,B兩個文件,各存放50億條URL,每條URL佔用64位元組,內存限制是4G,讓你找出A,B文件共同的URL。如果是三個乃至n個文件呢?
根據這個問題我們來計算下內存的佔用,4G=2^32大概是40億*8大概是340億,n=50億,如果按出錯率0.01算需要的大概是650億個bit。現在可用的是340億,相差並不多,這樣可能會使出錯率上升些。另外如果這些urlip是一一對應的,就可以轉換成ip,則大大簡單了。
二、Hashing
適用范圍:快速查找,刪除的基本數據結構,通常需要總數據量可以放入內存
基本原理及要點:
hash函數選擇,針對字元串,整數,排列,具體相應的hash方法。
碰撞處理,一種是open hashing,也稱為拉鏈法;另一種就是closed hashing,也稱開地址法,opened addressing。
擴展:
d-left hashing中的d是多個的意思,我們先簡化這個問題,看一看2-left hashing。2-left hashing指的是將一個哈希表分成長度相等的兩半,分別叫做T1和T2,給T1和T2分別配備一個哈希函數,h1和h2。在存儲一個新的key時,同時用兩個哈希函數進行計算,得出兩個地址h1[key]和h2[key]。這時需要檢查T1中的h1[key]位置和T2中的h2[key]位置,哪一個位置已經存儲的(有碰撞的)key比較多,然後將新key存儲在負載少的位置。如果兩邊一樣多,比如兩個位置都為空或者都存儲了一個key,就把新key存儲在左邊的T1子表中,2-left也由此而來。在查找一個key時,必須進行兩次hash,同時查找兩個位置。
問題實例:
1).海量日誌數據,提取出某日訪問網路次數最多的那個IP。
IP的數目還是有限的,最多2^32個,所以可以考慮使用hash將ip直接存入內存,然後進行統計。
三、bit-map
適用范圍:可進行數據的快速查找,判重,刪除,一般來說數據范圍是int的10倍以下
基本原理及要點:使用bit數組來表示某些元素是否存在,比如8位電話號碼
擴展:bloom filter可以看做是對bit-map的擴展
問題實例:
1)已知某個文件內包含一些電話號碼,每個號碼為8位數字,統計不同號碼的個數。
8位最多99 999 999,大概需要99m個bit,大概10幾m位元組的內存即可。
2)2.5億個整數中找出不重復的整數的個數,內存空間不足以容納這2.5億個整數。
將bit-map擴展一下,用2bit表示一個數即可,0表示未出現,1表示出現一次,2表示出現2次及以上。或者我們不用2bit來進行表示,我們用兩個bit-map即可模擬實現這個2bit-map。
四、堆
適用范圍:海量數據前n大,並且n比較小,堆可以放入內存
基本原理及要點:最大堆求前n小,最小堆求前n大。方法,比如求前n小,我們比較當前元素與最大堆里的最大元素,如果它小於最大元素,則應該替換那個最大元素。這樣最後得到的n個元素就是最小的n個。適合大數據量,求前n小,n的大小比較小的情況,這樣可以掃描一遍即可得到所有的前n元素,效率很高。
擴展:雙堆,一個最大堆與一個最小堆結合,可以用來維護中位數。
問題實例:
1)100w個數中找最大的前100個數。
用一個100個元素大小的最小堆即可。
五、雙層桶劃分-—其實本質上就是【分而治之】的思想,重在分的技巧上!
適用范圍:第k大,中位數,不重復或重復的數字
基本原理及要點:因為元素范圍很大,不能利用直接定址表,所以通過多次劃分,逐步確定范圍,然後最後在一個可以接受的范圍內進行。可以通過多次縮小,雙層只是一個例子。
擴展:
問題實例:
1).2.5億個整數中找出不重復的整數的個數,內存空間不足以容納這2.5億個整數。
有點像鴿巢原理,整數個數為2^32,也就是,我們可以將這2^32個數,劃分為2^8個區域(比如用單個文件代表一個區域),然後將數據分離到不同的區域,然後不同的區域在利用bitmap就可以直接解決了。也就是說只要有足夠的磁碟空間,就可以很方便的解決。
2).5億個int找它們的中位數。
這個例子比上面那個更明顯。首先我們將int劃分為2^16個區域,然後讀取數據統計落到各個區域里的數的個數,之後我們根據統計結果就可以判斷中位數落到那個區域,同時知道這個區域中的第幾大數剛好是中位數。然後第二次掃描我們只統計落在這個區域中的那些數就可以了。
實際上,如果不是int是int64,我們可以經過3次這樣的劃分即可降低到可以接受的程度。即可以先將int64分成2^24個區域,然後確定區域的第幾大數,在將該區域分成2^20個子區域,然後確定是子區域的第幾大數,然後子區域里的數的個數只有2^20,就可以直接利用direct addr table進行統計了。
六、資料庫索引
適用范圍:大數據量的增刪改查
基本原理及要點:利用數據的設計實現方法,對海量數據的增刪改查進行處理。
七、倒排索引(Inverted index)
適用范圍:搜索引擎,關鍵字查詢
基本原理及要點:為何叫倒排索引?一種索引方法,被用來存儲在全文搜索下某個單詞在一個文檔或者一組文檔中的存儲位置的映射。
以英文為例,下面是要被索引的文本: T0 = 「it is what it is」 T1 = 「what is it」 T2 = 「it is a banana」
我們就能得到下面的反向文件索引:
「a」: {2} 「banana」: {2} 「is」: {0, 1, 2} 「it」: {0, 1, 2} 「what」: {0, 1}
檢索的條件」what」,」is」和」it」將對應集合的交集。
正向索引開發出來用來存儲每個文檔的單詞的列表。正向索引的查詢往往滿足每個文檔有序頻繁的全文查詢和每個單詞在校驗文檔中的驗證這樣的查詢。在正向索引中,文檔占據了中心的位置,每個文檔指向了一個它所包含的索引項的序列。也就是說文檔指向了它包含的那些單詞,而反向索引則是單詞指向了包含它的文檔,很容易看到這個反向的關系。
擴展:
問題實例:文檔檢索系統,查詢那些文件包含了某單詞,比如常見的學術論文的關鍵字搜索。
八、外排序
適用范圍:大數據的排序,去重
基本原理及要點:外排序的歸並方法,置換選擇敗者樹原理,最優歸並樹
擴展:
問題實例:
1).有一個1G大小的一個文件,裡面每一行是一個詞,詞的大小不超過16個位元組,內存限制大小是1M。返回頻數最高的100個詞。
這個數據具有很明顯的特點,詞的大小為16個位元組,但是內存只有1m做hash有些不夠,所以可以用來排序。內存可以當輸入緩沖區使用。
九、trie樹
適用范圍:數據量大,重復多,但是數據種類小可以放入內存
基本原理及要點:實現方式,節點孩子的表示方式
擴展:壓縮實現。
問題實例:
1).有10個文件,每個文件1G,每個文件的每一行都存放的是用戶的query,每個文件的query都可能重復。要你按照query的頻度排序。
2).1000萬字元串,其中有些是相同的(重復),需要把重復的全部去掉,保留沒有重復的字元串。請問怎麼設計和實現?
3).尋找熱門查詢:查詢串的重復度比較高,雖然總數是1千萬,但如果除去重復後,不超過3百萬個,每個不超過255位元組。
十、分布式處理 maprece
適用范圍:數據量大,但是數據種類小可以放入內存
基本原理及要點:將數據交給不同的機器去處理,數據劃分,結果歸約。
擴展:
問題實例:
1).The canonical example application of MapRece is a process to count the appearances ofeach different word in a set of documents:
2).海量數據分布在100台電腦中,想個辦法高效統計出這批數據的TOP10。
3).一共有N個機器,每個機器上有N個數。每個機器最多存O(N)個數並對它們操作。如何找到N^2個數的中數(median)?

⑦ 綜合日誌審計平台的主要功能

●採集器:全面支持Syslog、SNMP日誌協議,可以覆蓋主流硬體設備、主機及應用,保障日誌信息的全面收集。實現信息資產(網路設備、安全設備、主機、應用及資料庫)的日誌獲取,並通過預置的解析規則實現日誌的解析、過濾及聚合,同時可將收集的日誌通過轉發功能轉發到其它網管平台等。
●通信伺服器:實現採集器與平台間的通信,將格式統一後的日誌直接寫入資料庫並且同時提交給關聯分析模塊進行分析處理。通信伺服器可以接收多個採集器的日誌;在平台尚未支持統一日誌格式時,能夠根據要求,將定義的統一日誌轉換為所需要的日誌格式。
●關聯引擎:實現全維度、跨設備、細粒度關聯分析,內置眾多的關聯規則,支持網路安全攻防檢測、合規性檢測,客戶可輕松實現各資產間的關聯分析。
●平台管理器:實現所監控的信息資產的實時監控、信息資產與客戶管理、解析規則與關聯規則的定義與分發、日誌信息的統計與報表、海量日誌的存儲與快速檢索以及平台的管理。通過各種事件的歸一化處理,實現高性能的海量事件存儲和檢索優化功能,提供高速的事件檢索能力、事後的合規性統計分析處理,可對數據進行二次挖掘分析。
●集中配置管理:系統支持分布式部署,可以在中心平台進行各種管理規則,各種配置策略自動分發,支持遠程自動升級等,極大的降低了分布式部署的難度,提高了可管理性。
●靈活的可擴展性:提供多種定製介面,實現強大的二次開發能力,及與第三方平台對接和擴展的能力。
●其他功能:支持各種網路部署需要,包括日誌聚合、日誌過濾、事件過濾、日誌轉發、特殊日誌格式支持(如單報文多事件)等。

⑧ 介紹一下海量數據的處理方法

介紹一下海量數據的處理方法
適用范圍:可以用來實現數據字典,進行數據的判重,或者集合求交集
基本原理及要點:
對於原理來說很簡單,位數組+k個獨立hash函數。將hash函數對應的值的位數組置1,查找時如果發現所有hash函數對應位都是1說明存在,很明顯這個過程並不保證查找的結果是100%正確的。同時也不支持刪除一個已經插入的關鍵字,因為該關鍵字對應的位會牽動到其他的關鍵字。所以一個簡單的改進就是 counting Bloom filter,用一個counter數組代替位數組,就可以支持刪除了。
還有一個比較重要的問題,如 何根據輸入元素個數n,確定位數組m的大小及hash函數個數。當hash函數個數k=(ln2)*(m/n)時錯誤率最小。在錯誤率不大於E的情況 下,m至少要等於n*lg(1/E)才能表示任意n個元素的集合。但m還應該更大些,因為還要保證bit數組里至少一半為0,則m應 該>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2為底的對數)。
舉個例子我們假設錯誤率為0.01,則此時m應大概是n的13倍。這樣k大概是8個。
注意這里m與n的單位不同,m是bit為單位,而n則是以元素個數為單位(准確的說是不同元素的個數)。通常單個元素的長度都是有很多bit的。所以使用bloom filter內存上通常都是節省的。
擴展:
Bloom filter將集合中的元素映射到位數組中,用k(k為哈希函數個數)個映射位是否全1表示元素在不在這個集合中。Counting bloom filter(CBF)將位數組中的每一位擴展為一個counter,從而支持了元素的刪除操作。Spectral Bloom Filter(SBF)將其與集合元素的出現次數關聯。SBF採用counter中的最小值來近似表示元素的出現頻率。
問題實例:給你A,B兩個文件,各存放50億條URL,每條URL佔用64位元組,內存限制是4G,讓你找出A,B文件共同的URL。如果是三個乃至n個文件呢?
根據這個問題我們來計算下內存的佔用,4G=2^32大概是40億*8大概是340億,n=50億,如果按出錯率0.01算需要的大概是650億個bit。 現在可用的是340億,相差並不多,這樣可能會使出錯率上升些。另外如果這些urlip是一一對應的,就可以轉換成ip,則大大簡單了。
2.Hashing
適用范圍:快速查找,刪除的基本數據結構,通常需要總數據量可以放入內存
基本原理及要點:
hash函數選擇,針對字元串,整數,排列,具體相應的hash方法。
碰撞處理,一種是open hashing,也稱為拉鏈法;另一種就是closed hashing,也稱開地址法,opened addressing。
擴展:
d-left hashing中的d是多個的意思,我們先簡化這個問題,看一看2-left hashing。2-left hashing指的是將一個哈希表分成長度相等的兩半,分別叫做T1和T2,給T1和T2分別配備一個哈希函數,h1和h2。在存儲一個新的key時,同時用兩個哈希函數進行計算,得出兩個地址h1[key]和h2[key]。這時需要檢查T1中的h1[key]位置和T2中的h2[key]位置,哪一個位置已經存儲的(有碰撞的)key比較多,然後將新key存儲在負載少的位置。如果兩邊一樣多,比如兩個位置都為空或者都存儲了一個key,就把新key 存儲在左邊的T1子表中,2-left也由此而來。在查找一個key時,必須進行兩次hash,同時查找兩個位置。
問題實例:1).海量日誌數據,提取出某日訪問網路次數最多的那個IP。

IP的數目還是有限的,最多2^32個,所以可以考慮使用hash將ip直接存入內存,然後進行統計。

3.bit-map

適用范圍:可進行數據的快速查找,判重,刪除,一般來說數據范圍是int的10倍以下

基本原理及要點:使用bit數組來表示某些元素是否存在,比如8位電話號碼

擴展:bloom filter可以看做是對bit-map的擴展

問題實例:

1)已知某個文件內包含一些電話號碼,每個號碼為8位數字,統計不同號碼的個數。

8位最多99 999 999,大概需要99m個bit,大概10幾m位元組的內存即可。

2)2.5億個整數中找出不重復的整數的個數,內存空間不足以容納這2.5億個整數。

將bit-map擴展一下,用2bit表示一個數即可,0表示未出現,1表示出現一次,2表示出現2次及以上。或者我們不用2bit來進行表示,我們用兩個bit-map即可模擬實現這個2bit-map。

4.堆

適用范圍:海量數據前n大,並且n比較小,堆可以放入內存

基本原理及要點:最大堆求前n小,最小堆求前n大。方法,比如求前n小,我們比較當前元素與最大堆里的最大元素,如果它小於最大元素,則應該替換那個最大元 素。這樣最後得到的n個元素就是最小的n個。適合大數據量,求前n小,n的大小比較小的情況,這樣可以掃描一遍即可得到所有的前n元素,效率很高。

擴展:雙堆,一個最大堆與一個最小堆結合,可以用來維護中位數。

問題實例:
1)100w個數中找最大的前100個數。

用一個100個元素大小的最小堆即可。

5.雙層桶劃分

適用范圍:第k大,中位數,不重復或重復的數字

基本原理及要點:因為元素范圍很大,不能利用直接定址表,所以通過多次劃分,逐步確定范圍,然後最後在一個可以接受的范圍內進行。可以通過多次縮小,雙層只是一個例子。

擴展:

問題實例:
1).2.5億個整數中找出不重復的整數的個數,內存空間不足以容納這2.5億個整數。

有點像鴿巢原理,整數個數為2^32,也就是,我們可以將這2^32個數,劃分為2^8個區域(比如用單個文件代表一個區域),然後將數據分離到不同的區域,然後不同的區域在利用bitmap就可以直接解決了。也就是說只要有足夠的磁碟空間,就可以很方便的解決。

2).5億個int找它們的中位數。

這個例子比上面那個更明顯。首先我們將int劃分為2^16個區域,然後讀取數據統計落到各個區域里的數的個數,之後我們根據統計結果就可以判斷中位數落到那個區域,同時知道這個區域中的第幾大數剛好是中位數。然後第二次掃描我們只統計落在這個區域中的那些數就可以了。

實際上,如果不是int是int64,我們可以經過3次這樣的劃分即可降低到可以接受的程度。即可以先將int64分成2^24個區域,然後確定區域的第幾 大數,在將該區域分成2^20個子區域,然後確定是子區域的第幾大數,然後子區域里的數的個數只有2^20,就可以直接利用direct addr table進行統計了。

6.資料庫索引

適用范圍:大數據量的增刪改查

基本原理及要點:利用數據的設計實現方法,對海量數據的增刪改查進行處理。
擴展:
問題實例:

7.倒排索引(Inverted index)

適用范圍:搜索引擎,關鍵字查詢

基本原理及要點:為何叫倒排索引?一種索引方法,被用來存儲在全文搜索下某個單詞在一個文檔或者一組文檔中的存儲位置的映射。

以英文為例,下面是要被索引的文本:
T0 = 「it is what it is」
T1 = 「what is it」
T2 = 「it is a banana」
我們就能得到下面的反向文件索引:
「a」: {2}
「banana」: {2}
「is」: {0, 1, 2}
「it」: {0, 1, 2}
「what」: {0, 1}
檢索的條件」what」, 「is」 和 「it」 將對應集合的交集。

正 向索引開發出來用來存儲每個文檔的單詞的列表。正向索引的查詢往往滿足每個文檔有序頻繁的全文查詢和每個單詞在校驗文檔中的驗證這樣的查詢。在正向索引中,文檔占據了中心的位置,每個文檔指向了一個它所包含的索引項的序列。也就是說文檔指向了它包含的那些單詞,而反向索引則是單詞指向了包含它的文檔,很 容易看到這個反向的關系。

擴展:

問題實例:文檔檢索系統,查詢那些文件包含了某單詞,比如常見的學術論文的關鍵字搜索。

8.外排序

適用范圍:大數據的排序,去重

基本原理及要點:外排序的歸並方法,置換選擇 敗者樹原理,最優歸並樹

擴展:

問題實例:
1).有一個1G大小的一個文件,裡面每一行是一個詞,詞的大小不超過16個位元組,內存限制大小是1M。返回頻數最高的100個詞。

這個數據具有很明顯的特點,詞的大小為16個位元組,但是內存只有1m做hash有些不夠,所以可以用來排序。內存可以當輸入緩沖區使用。

9.trie樹

適用范圍:數據量大,重復多,但是數據種類小可以放入內存

基本原理及要點:實現方式,節點孩子的表示方式

擴展:壓縮實現。

問題實例:
1).有10個文件,每個文件1G, 每個文件的每一行都存放的是用戶的query,每個文件的query都可能重復。要你按照query的頻度排序 。

2).1000萬字元串,其中有些是相同的(重復),需要把重復的全部去掉,保留沒有重復的字元串。請問怎麼設計和實現?

3).尋找熱門查詢:查詢串的重復度比較高,雖然總數是1千萬,但如果除去重復後,不超過3百萬個,每個不超過255位元組。

10.分布式處理 maprece

適用范圍:數據量大,但是數據種類小可以放入內存

基本原理及要點:將數據交給不同的機器去處理,數據劃分,結果歸約。

擴展:

問題實例:

1).The canonical example application of MapRece is a process to count the appearances of

each different word in a set of documents:
void map(String name, String document):
// name: document name
// document: document contents
for each word w in document:
EmitIntermediate(w, 1);

void rece(String word, Iterator partialCounts):
// key: a word
// values: a list of aggregated partial counts
int result = 0;
for each v in partialCounts:
result += ParseInt(v);
Emit(result);
Here, each document is split in words, and each word is counted initially with a 「1″ value by

the Map function, using the word as the result key. The framework puts together all the pairs

with the same key and feeds them to the same call to Rece, thus this function just needs to

sum all of its input values to find the total appearances of that word.

2).海量數據分布在100台電腦中,想個辦法高效統計出這批數據的TOP10。

3).一共有N個機器,每個機器上有N個數。每個機器最多存O(N)個數並對它們操作。如何找到N^2個數的中數(median)?

經典問題分析

上千萬or億數據(有重復),統計其中出現次數最多的前N個數據,分兩種情況:可一次讀入內存,不可一次讀入。

可用思路:trie樹+堆,資料庫索引,劃分子集分別統計,hash,分布式計算,近似統計,外排序

所 謂的是否能一次讀入內存,實際上應該指去除重復後的數據量。如果去重後數據可以放入內存,我們可以為數據建立字典,比如通過 map,hashmap,trie,然後直接進行統計即可。當然在更新每條數據的出現次數的時候,我們可以利用一個堆來維護出現次數最多的前N個數據,當 然這樣導致維護次數增加,不如完全統計後在求前N大效率高。

如果數據無法放入內存。一方面我們可以考慮上面的字典方法能否被改進以適應這種情形,可以做的改變就是將字典存放到硬碟上,而不是內存,這可以參考資料庫的存儲方法。
當然還有更好的方法,就是可以採用分布式計算,基本上就是map-rece過程,首先可以根據數據值或者把數據hash(md5)後的值,將數據按照范圍劃分到不同的機子,最好可以讓數據劃分後可以一次讀入內存,這樣不同的機子負責處理各種的數值范圍,實際上就是map。得到結果後,各個機子只需拿出各 自的出現次數最多的前N個數據,然後匯總,選出所有的數據中出現次數最多的前N個數據,這實際上就是rece過程。
實際上可能想直接將數據均分到不同的機子上進行處理,這樣是無法得到正確的解的。因為一個數據可能被均分到不同的機子上,而另一個則可能完全聚集到一個機子上,同時還可 能存在具有相同數目的數據。比如我們要找出現次數最多的前100個,我們將1000萬的數據分布到10台機器上,找到每台出現次數最多的前 100個,歸並之後這樣不能保證找到真正的第100個,因為比如出現次數最多的第100個可能有1萬個,但是它被分到了10台機子,這樣在每台上只有1千個,假設這些機子排名在1000個之前的那些都是單獨分布在一台機子上的,比如有1001個,這樣本來具有1萬個的這個就會被淘汰,即使我們讓每台機子選出出現次數最多的1000個再歸並,仍然會出錯,因為可能存在大量個數為1001個的發生聚集。因此不能將數據隨便均分到不同機子上,而是要根據hash 後的值將它們映射到不同的機子上處理,讓不同的機器處理一個數值范圍。
而外排序的方法會消耗大量的IO,效率不會很高。而上面的分布式方法,也可以用於單機版本,也就是將總的數據根據值的范圍,劃分成多個不同的子文件,然後逐個處理。處理完畢之後再對這些單詞的及其出現頻率進行一個歸並。實際上就可以利用一個外排序的歸並過程。
另外還可以考慮近似計算,也就是我們可以通過結合自然語言屬性,只將那些真正實際中出現最多的那些詞作為一個字典,使得這個規模可以放入內存。

⑨ 到底什麼才是運維自動化。linux;沒分了,大神幫解決疑惑啊

自動化運維講的是運籌帷幄之中,決勝千里之外。
預防大於補救。
可以參照以下:
1.通過監控告警引擎,實現應用軟體、中間件、資料庫、主機、網路、存儲、雲資源的全方位監控告警。2、通過自動化運維調度引擎所提供強大的自動化運維能力,可通過平台完成巡檢、性能分析、文件下發、故障診斷等自動化運維任務。3、通過大數據技術,對海量日誌信息進行收集存儲,並提供實時搜索功能,輔助快速定位故障,同時通過對海量日誌的分析,得出系統運營情況。這是目前我們的自動化運維平台可以做到的

熱點內容
伺服器日誌怎麼分析 發布:2024-11-15 06:22:04 瀏覽:525
字體目錄在哪個文件夾 發布:2024-11-15 06:20:28 瀏覽:181
php種子怎麼打開 發布:2024-11-15 06:07:01 瀏覽:346
密碼箱的密碼忘記了如何開鎖 發布:2024-11-15 06:04:41 瀏覽:956
安卓軟體和蘋果系統哪個好 發布:2024-11-15 05:48:32 瀏覽:284
pythonwhileelse 發布:2024-11-15 05:39:10 瀏覽:672
java文件流上傳文件 發布:2024-11-15 05:24:02 瀏覽:148
linux安裝so 發布:2024-11-15 05:22:29 瀏覽:582
九游版冒險王2適合安卓哪個版本 發布:2024-11-15 05:12:33 瀏覽:601
iphonexsmax怎麼連接伺服器 發布:2024-11-15 05:11:46 瀏覽:776