當前位置:首頁 » 存儲配置 » 大數據的數據存儲管理

大數據的數據存儲管理

發布時間: 2022-06-04 11:34:27

1. 傳統的數據存儲個管理技術與大數據時代存儲和管理技術的區別

咨詢記錄 · 回答於2021-09-27

2. 大數據處理要遵循什麼流程

數據治理流程是從數據規劃、數據採集、數據儲存管理到數據應用整個流程的無序到有序的過程,也是標准化流程的構建過程。

根據每一個過程的特點,我們可以將數據治理流程總結為四個字,即「理」、「采」、「存」、「用」。



1.理:梳理業務流程,規劃數據資源

對於企業來說,每天的實時數據都會超過TB級別,需要採集用戶的哪些數據,這么多的數據放在哪裡,如何放,以什麼樣的方式放?

這些問題都是需要事先進行規劃的,需要有一套從無序變為有序的流程,這個過程需要跨部門的協作,包括了前端、後端、數據工程師、數據分析師、項目經理等角色的參與。

2.采:ETL採集、去重、脫敏、轉換、關聯、去除異常值

前後端將採集到的數據給到數據部門,數據部門通過ETL工具將數據從來源端經過抽取(extract)、轉換(transform)、載入(load)至目的端的過程,目的是將散落和零亂的數據集中存儲起來。

3.存:大數據高性能存儲及管理

這么多的業務數據存在哪裡?這需要有一高性能的大數據存儲系統,在這套系統裡面將數據進行分門別類放到其對應的庫裡面,為後續的管理及使用提供最大的便利。

4.用:即時查詢、報表監控、智能分析、模型預測

數據的最終目的就是輔助業務進行決策,前面的幾個流程都是為最終的查詢、分析、監控做鋪墊。

這個階段就是數據分析師的主場,分析師們運用這些標准化的數據可以進行即時的查詢、指標體系和報表體系的建立、業務問題的分析,甚至是模型的預測。

3. 大數據存儲與應用特點及技術路線分析

大數據存儲與應用特點及技術路線分析

大數據時代,數據呈爆炸式增長。從存儲服務的發展趨勢來看,一方面,對數據的存儲量的需求越來越大;另一方面,對數據的有效管理提出了更高的要求。大數據對存儲設備的容量、讀寫性能、可靠性、擴展性等都提出了更高的要求,需要充分考慮功能集成度、數據安全性、數據穩定性,系統可擴展性、性能及成本各方面因素。

大數據存儲與應用的特點分析

「大數據」是由數量巨大、結構復雜、類型眾多數據構成的數據集合,是基於雲計算的數據處理與應用模式,通過數據的整合共享,交叉復用形成的智力資源和知識服務能力。其常見特點可以概括為3V:Volume、Velocity、Variety(規模大、速度快、多樣性)。

大數據具有數據規模大(Volume)且增長速度快的特性,其數據規模已經從PB級別增長到EB級別,並且仍在不斷地根據實際應用的需求和企業的再發展繼續擴容,飛速向著ZB(ZETA-BYTE)的規模進軍。以國內最大的電子商務企業淘寶為例,根據淘寶網的數據顯示,至2011年底,淘寶網最高單日獨立用戶訪問量超過1.2億人,比2010年同期增長120%,注冊用戶數量超過4億,在線商品數量達到8億,頁面瀏覽量達到20億規模,淘寶網每天產生4億條產品信息,每天活躍數據量已經超過50TB.所以大數據的存儲或者處理系統不僅能夠滿足當前數據規模需求,更需要有很強的可擴展性以滿足快速增長的需求。

(1)大數據的存儲及處理不僅在於規模之大,更加要求其傳輸及處理的響應速度快(Velocity)。

相對於以往較小規模的數據處理,在數據中心處理大規模數據時,需要服務集群有很高的吞吐量才能夠讓巨量的數據在應用開發人員「可接受」的時間內完成任務。這不僅是對於各種應用層面的計算性能要求,更加是對大數據存儲管理系統的讀寫吞吐量的要求。例如個人用戶在網站選購自己感興趣的貨物,網站則根據用戶的購買或者瀏覽網頁行為實時進行相關廣告的推薦,這需要應用的實時反饋;又例如電子商務網站的數據分析師根據購物者在當季搜索較為熱門的關鍵詞,為商家提供推薦的貨物關鍵字,面對每日上億的訪問記錄要求機器學習演算法在幾天內給出較為准確的推薦,否則就丟失了其失效性;更或者是計程車行駛在城市的道路上,通過GPS反饋的信息及監控設備實時路況信息,大數據處理系統需要不斷地給出較為便捷路徑的選擇。這些都要求大數據的應用層可以最快的速度,最高的帶寬從存儲介質中獲得相關海量的數據。另外一方面,海量數據存儲管理系統與傳統的資料庫管理系統,或者基於磁帶的備份系統之間也在發生數據交換,雖然這種交換實時性不高可以離線完成,但是由於數據規模的龐大,較低的數據傳輸帶寬也會降低數據傳輸的效率,而造成數據遷移瓶頸。因此大數據的存儲與處理的速度或是帶寬是其性能上的重要指標。

(2)大數據由於其來源的不同,具有數據多樣性的特點。

所謂多樣性,一是指數據結構化程度,二是指存儲格式,三是存儲介質多樣性。對於傳統的資料庫,其存儲的數據都是結構化數據,格式規整,相反大數據來源於日誌、歷史數據、用戶行為記錄等等,有的是結構化數據,而更多的是半結構化或者非結構化數據,這也正是傳統資料庫存儲技術無法適應大數據存儲的重要原因之一。所謂存儲格式,也正是由於其數據來源不同,應用演算法繁多,數據結構化程度不同,其格式也多種多樣。例如有的是以文本文件格式存儲,有的則是網頁文件,有的是一些被序列化後的比特流文件等等。所謂存儲介質多樣性是指硬體的兼容,大數據應用需要滿足不同的響應速度需求,因此其數據管理提倡分層管理機制,例如較為實時或者流數據的響應可以直接從內存或者Flash(SSD)中存取,而離線的批處理可以建立在帶有多塊磁碟的存儲伺服器上,有的可以存放在傳統的SAN或者NAS網路存儲設備上,而備份數據甚至可以存放在磁帶機上。因而大數據的存儲或者處理系統必須對多種數據及軟硬體平台有較好的兼容性來適應各種應用演算法或者數據提取轉換與載入(ETL)。

大數據存儲技術路線最典型的共有三種:

第一種是採用MPP架構的新型資料庫集群,重點面向行業大數據,採用Shared Nothing架構,通過列存儲、粗粒度索引等多項大數據處理技術,再結合MPP架構高效的分布式計算模式,完成對分析類應用的支撐,運行環境多為低成本 PC Server,具有高性能和高擴展性的特點,在企業分析類應用領域獲得極其廣泛的應用。

這類MPP產品可以有效支撐PB級別的結構化數據分析,這是傳統資料庫技術無法勝任的。對於企業新一代的數據倉庫和結構化數據分析,目前最佳選擇是MPP資料庫。

第二種是基於Hadoop的技術擴展和封裝,圍繞Hadoop衍生出相關的大數據技術,應對傳統關系型資料庫較難處理的數據和場景,例如針對非結構化數據的存儲和計算等,充分利用Hadoop開源的優勢,伴隨相關技術的不斷進步,其應用場景也將逐步擴大,目前最為典型的應用場景就是通過擴展和封裝 Hadoop來實現對互聯網大數據存儲、分析的支撐。這裡面有幾十種NoSQL技術,也在進一步的細分。對於非結構、半結構化數據處理、復雜的ETL流程、復雜的數據挖掘和計算模型,Hadoop平台更擅長。

第三種是大數據一體機,這是一種專為大數據的分析處理而設計的軟、硬體結合的產品,由一組集成的伺服器、存儲設備、操作系統、資料庫管理系統以及為數據查詢、處理、分析用途而特別預先安裝及優化的軟體組成,高性能大數據一體機具有良好的穩定性和縱向擴展性。

以上是小編為大家分享的關於大數據存儲與應用特點及技術路線分析的相關內容,更多信息可以關注環球青藤分享更多干貨

4. 大數據的處理流程包括了哪些環節

處理大數據的四個環節:

  • 收集:原始數據種類多樣,格式、位置、存儲、時效性等迥異。數據收集從異構數據源中收集數據並轉換成相應的格式方便處理。

  • 存儲:收集好的數據需要根據成本、格式、查詢、業務邏輯等需求,存放在合適的存儲中,方便進一步的分析。

  • 變形:原始數據需要變形與增強之後才適合分析,比如網頁日誌中把IP地址替換成省市、感測器數據的糾錯、用戶行為統計等。

  • 分析:通過整理好的數據分析what happened、why it happened、what is happening和what will happen,幫助企業決策。

5. 大數據處理一般有哪些流程

第一,數據收集


定義:利用多種輕型資料庫來接收發自客戶端的數據,並且用戶可以通過這些資料庫來進行簡略的查詢和處理工作。


特色和應戰:並發系數高。


運用的產品:MySQL,Oracle,HBase,Redis和 MongoDB等,並且這些產品的特色各不相同。


第二,統計剖析


定義:將海量的來自前端的數據快速導入到一個集中的大型分布式資料庫 或者分布式存儲集群,利用分布式技術來對存儲於其內的集中的海量數據 進行普通的查詢和分類匯總等,以此滿足大多數常見的剖析需求。


特色和應戰:導入數據量大,查詢涉及的數據量大,查詢懇求多。


運用的產品:InfoBright,Hadoop(Pig和Hive),YunTable, SAP Hana和Oracle Exadata,除Hadoop以做離線剖析為主之外,其他產品可做實時剖析。


第三,發掘數據


定義:基於前面的查詢數據進行數據發掘,來滿足高檔其他數據剖析需求。


特色和應戰:演算法復雜,並且計算涉及的數據量和計算量都大。


運用的產品:R,Hadoop Mahout。


關於大數據處理一般有哪些流程,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

6. 什麼是大數據存儲管理

1.分布式存儲

傳統化集中式存儲存在已有一段時間。但大數據並非真的適合集中式存儲架構。Hadoop設計用於將計算更接近數據節點,同時採用了HDFS文件系統的大規模橫向擴展功能。

雖然,通常解決Hadoop管理自身數據低效性的方案是將Hadoop 數據存儲在SAN上。但這也造成了它自身性能與規模的瓶頸。現在,如果你把所有的數據都通過集中式SAN處理器進行處理,與Hadoop的分布式和並行化特性相悖。你要麼針對不同的數據節點管理多個SAN,要麼將所有的數據節點都集中到一個SAN。

但Hadoop是一個分布式應用,就應該運行在分布式存儲上,這樣存儲就保留了與Hadoop本身同樣的靈活性,不過它也要求擁抱一個軟體定義存儲方案,並在商用伺服器上運行,這相比瓶頸化的Hadoop自然更為高效。

2.超融合VS分布式

注意,不要混淆超融合與分布式。某些超融合方案是分布式存儲,但通常這個術語意味著你的應用和存儲都保存在同一計算節點上。這是在試圖解決數據本地化的問題,但它會造成太多資源爭用。這個Hadoop應用和存儲平台會爭用相同的內存和CPU。Hadoop運行在專有應用層,分布式存儲運行在專有存儲層這樣會更好。之後,利用緩存和分層來解決數據本地化並補償網路性能損失。

3.避免控制器瓶頸(Controller Choke Point)

實現目標的一個重要方面就是——避免通過單個點例如一個傳統控制器來處理數據。反之,要確保存儲平台並行化,性能可以得到顯著提升。

此外,這個方案提供了增量擴展性。為數據湖添加功能跟往裡面扔x86伺服器一樣簡單。一個分布式存儲平台如有需要將自動添加功能並重新調整數據。

4.刪重和壓縮

掌握大數據的關鍵是刪重和壓縮技術。通常大數據集內會有70%到90%的數據簡化。以PB容量計,能節約數萬美元的磁碟成本。現代平台提供內聯(對比後期處理)刪重和壓縮,大大降低了存儲數據所需能力。

5.合並Hadoop發行版

很多大型企業擁有多個Hadoop發行版本。可能是開發者需要或是企業部門已經適應了不同版本。無論如何最終往往要對這些集群的維護與運營。一旦海量數據真正開始影響一家企業時,多個Hadoop發行版存儲就會導致低效性。我們可以通過創建一個單一,可刪重和壓縮的數據湖獲取數據效率

6.虛擬化Hadoop

虛擬化已經席捲企業級市場。很多地區超過80%的物理伺服器現在是虛擬化的。但也仍有很多企業因為性能和數據本地化問題對虛擬化Hadoop避而不談。

7.創建彈性數據湖

創建數據湖並不容易,但大數據存儲可能會有需求。我們有很多種方法來做這件事,但哪一種是正確的?這個正確的架構應該是一個動態,彈性的數據湖,可以以多種格式(架構化,非結構化,半結構化)存儲所有資源的數據。更重要的是,它必須支持應用不在遠程資源上而是在本地數據資源上執行。

不幸的是,傳統架構和應用(也就是非分布式)並不盡如人意。隨著數據集越來越大,將應用遷移到數據不可避免,而因為延遲太長也無法倒置。

理想的數據湖基礎架構會實現數據單一副本的存儲,而且有應用在單一數據資源上執行,無需遷移數據或製作副本

8.整合分析

分析並不是一個新功能,它已經在傳統RDBMS環境中存在多年。不同的是基於開源應用的出現,以及資料庫表單和社交媒體,非結構化數據資源(比如,維基網路)的整合能力。關鍵在於將多個數據類型和格式整合成一個標準的能力,有利於更輕松和一致地實現可視化與報告製作。合適的工具也對分析/商業智能項目的成功至關重要。

9. 大數據遇見大視頻

大數據存儲問題已經讓人有些焦頭爛額了,現在還出現了大視頻現象。比如,企業為了安全以及操作和工業效率逐漸趨於使用視頻監控,簡化流量管理,支持法規遵從性和幾個其它的使用案例。很短時間內這些資源將產生大量的內容,大量必須要處理的內容。如果沒有專業的存儲解決方案很可能會導致視頻丟失和質量降低的問題。

10.沒有絕對的贏家

Hadoop的確取得了一些進展。那麼隨著大數據存儲遍地開花,它是否會成為贏家,力壓其它方案,其實不然。

比如,基於SAN的傳統架構在短期內不可取代,因為它們擁有OLTP,100%可用性需求的內在優勢。所以最理想的辦法是將超融合平台與分布式文件系統和分析軟體整合在一起。而成功的最主要因素則是存儲的可擴展性因素。

7. 大數據的數據的存儲方式是什麼

大數據有效存儲和管理大數據的三種方式:
1.
不斷加密
任何類型的數據對於任何一個企業來說都是至關重要的,而且通常被認為是私有的,並且在他們自己掌控的范圍內是安全的。然而,黑客攻擊經常被覆蓋在業務故障中,最新的網路攻擊活動在新聞報道不斷充斥。因此,許多公司感到很難感到安全,尤其是當一些行業巨頭經常成為攻擊目標時。
隨著企業為保護資產全面開展工作,加密技術成為打擊網路威脅的可行途徑。將所有內容轉換為代碼,使用加密信息,只有收件人可以解碼。如果沒有其他的要求,則加密保護數據傳輸,增強在數字傳輸中有效地到達正確人群的機會。
2.
倉庫存儲
大數據似乎難以管理,就像一個永無休止統計數據的復雜的漩渦。因此,將信息精簡到單一的公司位置似乎是明智的,這是一個倉庫,其中所有的數據和伺服器都可以被充分地規劃指定。然而,有些報告指出了反對這種方法的論據,指出即使是最大的存儲中心,大數據的指數增長也不再能維持。
然而,在某些情況下,企業可能會租用一個倉庫來存儲大量數據,在大數據超出的情況下,這是一個臨時的解決方案,而LCP屬性提供了一些很好的機會。畢竟,企業不會立即被大量的數據所淹沒,因此,為物理機器租用倉庫至少在短期內是可行的。這是一個簡單有效的解決方案,但並不是永久的成本承諾。
3.
備份服務
-
雲端
當然,不可否認的是,大數據管理和存儲正在迅速脫離物理機器的范疇,並迅速進入數字領域。除了所有技術的發展,大數據增長得更快,以這樣的速度,世界上所有的機器和倉庫都無法完全容納它。
因此,由於雲存儲服務推動了數字化轉型,雲計算的應用越來越繁榮。數據在一個位置不再受到風險控制,並隨時隨地可以訪問,大型雲計算公司(如谷歌雲)將會更多地訪問基本統計信息。數據可以在這些服務上進行備份,這意味著一次網路攻擊不會消除多年的業務增長和發展。最終,如果出現網路攻擊,雲端將以A遷移到B的方式提供獨一無二的服務。

8. 大數據採集與存儲的基本步驟有哪些

數據抽取



針對大數據分析平台需要採集的各類數據,分別有針對性地研製適配介面。對於已有的信息系統,研發對應的介面模塊與各信息系統對接,不能實現數據共享介面的系統通過ETL工具進行數據採集,支持多種類型資料庫,按照相應規范對數據進行清洗轉換,從而實現數據的統一存儲管理。



數據預處理



為使大數據分析平台能更方便對數據進行處理,同時為了使得數據的存儲機制擴展性、容錯性更好,需要把數據按照相應關聯性進行組合,並將數據轉化為文本格式,作為文件存儲下來。



數據存儲



除了Hadoop中已廣泛應用於數據存儲的HDFS,常用的還有分布式、面向列的開源資料庫Hbase,HBase是一種key/value系統,部署在HDFS上,與Hadoop一樣,HBase的目標主要是依賴橫向擴展,通過不斷的增加廉價的商用伺服器,增加計算和存儲能力。



關於大數據採集與存儲的基本步驟有哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

9. 大數據時代,數據的存儲與管理有哪些要求

數據時代的到來,數據的存儲有以下主要要求:
首先,海量數據被及時有效地存儲。根據現行技術和預防性法規和標准,系統採集的信息的保存時間不少於30天。數據量隨時間的增加而線性增加。

其次,數據存儲系統需要具有可擴展性,不僅要滿足海量數據的不斷增長,還要滿足獲取更高解析度或更多採集點的數據需求。

第三,存儲系統的性能要求很高。在多通道並發存儲的情況下,它對帶寬,數據容量,高速緩存等有很高的要求,並且需要針對視頻性能進行優化。

第四,大數據應用需要對數據存儲進行集中管理分析。

熱點內容
微軟怎麼關閉配置更新 發布:2025-01-12 08:34:23 瀏覽:316
wifi的有限的訪問許可權 發布:2025-01-12 08:34:14 瀏覽:609
cftp文件重命名 發布:2025-01-12 08:33:27 瀏覽:881
https的加密演算法 發布:2025-01-12 08:19:15 瀏覽:653
資料庫交 發布:2025-01-12 08:09:06 瀏覽:472
一台剪輯電腦要什麼配置 發布:2025-01-12 07:50:16 瀏覽:12
android與java 發布:2025-01-12 07:50:12 瀏覽:498
列印機手機連接密碼是什麼 發布:2025-01-12 07:48:31 瀏覽:586
冒險島2什麼伺服器 發布:2025-01-12 07:39:22 瀏覽:136
phpcms文件夾許可權 發布:2025-01-12 07:22:06 瀏覽:123