android中socket
㈠ Android - Socket簡單使用
ServerSocket類提供如下構造器:
當ServerSocket使用完畢,應使用 close() 方法來關閉此ServerSocket。通常情況下,伺服器不應該只接收一個客戶端請求,而應該不斷接收來自客戶端的請求,所以程序可以通過循環,不斷調用ServerSocket的accept方法:
Socket 常用構造器
註:上面兩個構造器指定遠程主機時既可以使用InetAddress來指定,也可以直接使用String對象來指定遠程IP。本地主機只有一個IP地址時,使用第一個方法更簡單。
在與伺服器進行通訊的時候,無法判斷遠程的伺服器是否斷開連接。如果使用 OutputStream 發送數據則會影響正常的數據發送(無法區分)。所以就引入了一個心跳機制。
心跳機制實現,使用 Socket.sendUrgentData() 方法發送一個位元組流數據(緊急數據)。可以通過判斷服務端的 OOBINLINE 屬性是否打開,來確定是否斷開連接;
setSoTimeout()理解 :設置超時時間;例如:設置為2s,如果阻塞的時間>2s ,那麼就會報錯。
㈡ Android如何進行Socket通信
舉一個簡單的例子吧。
伺服器端:
java">importjava.io.IOException;
importjava.io.OutputStream;
importjava.net.ServerSocket;
importjava.net.Socket;
/**
*簡單Socket伺服器類
*/
publicclassSimpleServer{
publicstaticvoidmain(String[]args)throwsIOException{
//創建Socket伺服器,監聽客戶端Socket的連接請求
ServerSocketserver=newServerSocket(30000);
while(true){
//每當接收到客戶端Socket請求,Socket伺服器端會產生一個對應的Socket
Socketclient=server.accept();
OutputStreamos=client.getOutputStream();
os.write("歡迎您連接伺服器".getBytes("utf-8"));
os.close();
client.close();
}
}
}
Android客戶端:
packagecom.simpleclient;
importjava.io.BufferedReader;
importjava.io.InputStream;
importjava.io.InputStreamReader;
importjava.net.Socket;
importandroid.app.Activity;
importandroid.os.Bundle;
importandroid.widget.TextView;
{
TextViewtextView;
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
textView=(TextView)findViewById(R.id.textView1);
MyThreadthread=newMyThread();
thread.start();
}
/**
*線程類
*/
classMyThreadextendsThread{
publicvoidrun(){
try{
Socketsocket=newSocket("192.168.1.51",30000);
InputStreamis=socket.getInputStream();
InputStreamReaderisr=newInputStreamReader(is);
BufferedReaderbr=newBufferedReader(isr);
textView.setText(br.readLine());
br.close();
isr.close();
is.close();
socket.close();
}
catch(Exceptione){
System.out.println(e.toString());
}
}
}
}
修改AndroidManifest.xml文件,允許訪問Internet:
<!--添加網路訪問許可權-->
<uses-permissionandroid:name="android.permission.INTERNET"/>
㈢ android socket有幾種方法
/***第一種:客戶端Socket通過構造方法連接伺服器***/
//客戶端Socket可以通過指定IP地址或域名兩種方式來連接伺服器端,實際最終都是通過IP地址來連接伺服器
//新建一個Socket,指定其IP地址及埠號
Socket socket = new Socket("192.168.0.7",80);
/***Socket 客戶端 一些常用設置***/
//客戶端socket在接收數據時,有兩種超時:1.連接伺服器超時,即連接超時;2.連接伺服器成功後,接收伺服器數據超時,即接收超時
//*設置socket 讀取數據流的超時時間
socket.setSoTimeout(5000);
//發送數據包,默認為false,即客戶端發送數據採用Nagle演算法;
//但是對於實時交互性高的程序,建議其改為true,即關閉Nagle演算法,客戶端每發送一次數據,無論數據包大小都會將這些數據發送出去
socket.setTcpNoDelay(true);
//設置客戶端socket關閉時,close()方法起作用時延遲1分鍾關閉,如果1分鍾內盡量將未發送的數據包發送出去
socket.setSoLinger(true, 60);
//設置輸出流的發送緩沖區大小,默認是8KB,即8096位元組
socket.setSendBufferSize(8096);
//設置輸入流的接收緩沖區大小,默認是8KB,即8096位元組
socket.setReceiveBufferSize(8096);
//作用:每隔一段時間檢查伺服器是否處於活動狀態,如果伺服器端長時間沒響應,自動關閉客戶端socket
//防止伺服器端無效時,客戶端長時間處於連接狀態
socket.setKeepAlive(true);
/*** Socket客戶端向伺服器端發送數據 ****/
//客戶端向伺服器端發送數據,獲取客戶端向伺服器端輸出流
OutputStream os = socket.getOutputStream();
OutputStreamWriter osw = new OutputStreamWriter(os);
BufferedWriter bw = new BufferedWriter(osw);
//代表可以立即向伺服器端發送單位元組數據
socket.setOOBInline(true);
//數據不經過輸出緩沖區,立即發送
socket.sendUrgentData(65);//"A"
//向伺服器端寫數據,寫入一個緩沖區
//註:此處字元串最後必須包含「\r\n\r\n」,告訴伺服器HTTP頭已經結束,可以處理數據,否則會造成下面的讀取數據出現阻塞
//在write()方法中可以定義規則,與後台匹配來識別相應的功能,例如登錄Login()方法,可以寫為write("Login|test,123 \r\n\r\n"),供後台識別;
bw.write("Login|test,123 \r\n\r\n");
//發送緩沖區中數據,必須有
bw.flush();
/*** Socket客戶端讀取伺服器端響應數據 ****/
//socket.isConnected代表是否連接成功過
if((socket.isConnected() == true) && (socket.isClosed() == false)){//判斷Socket是否處於連接狀態
//客戶端接收伺服器端的響應,讀取伺服器端向客戶端的輸入流
InputStream is = socket.getInputStream();
//緩沖區
byte[] buffer = new byte[is.available()];
//讀取緩沖區
is.read(buffer);
//轉換為字元串
String responseInfo = new String(buffer);
//日誌中輸出
Log.i("TEST", responseInfo);
} //關閉網路
socket.close();
/***第二種:通過connect方法連接伺服器***/
Socket socket_other = new Socket();
//使用默認的連接超時
socket_other.connect(new InetSocketAddress("192.168.0.7",80));
//連接超時2s
socket_other.connect(new InetSocketAddress("192.168.0.7",80),2000);
//關閉socket
socket_other.close();
} catch (UnknownHostException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
㈣ Android socket源碼解析(三)socket的connect源碼解析
上一篇文章著重的聊了socket服務端的bind,listen,accpet的邏輯。本文來著重聊聊connect都做了什麼?
如果遇到什麼問題,可以來本文 https://www.jianshu.com/p/da6089fdcfe1 下討論
當服務端一切都准備好了。客戶端就會嘗試的通過 connect 系統調用,嘗試的和服務端建立遠程連接。
首先校驗當前socket中是否有正確的目標地址。然後獲取IP地址和埠調用 connectToAddress 。
在這個方法中,能看到有一個 NetHooks 跟蹤socket的調用,也能看到 BlockGuard 跟蹤了socket的connect調用。因此可以hook這兩個地方跟蹤socket,不過很少用就是了。
核心方法是 socketConnect 方法,這個方法就是調用 IoBridge.connect 方法。同理也會調用到jni中。
能看到也是調用了 connect 系統調用。
文件:/ net / ipv4 / af_inet.c
在這個方法中做的事情如下:
注意 sk_prot 所指向的方法是, tcp_prot 中 connect 所指向的方法,也就是指 tcp_v4_connect .
文件:/ net / ipv4 / tcp_ipv4.c
本質上核心任務有三件:
想要能夠理解下文內容,先要明白什麼是路由表。
路由表分為兩大類:
每個路由器都有一個路由表(RIB)和轉發表 (fib表),路由表用於決策路由,轉發表決策轉發分組。下文會接觸到這兩種表。
這兩個表有什麼區別呢?
網上雖然給了如下的定義:
但實際上在Linux 3.8.1中並沒有明確的區分。整個路由相關的邏輯都是使用了fib轉發表承擔的。
先來看看幾個和FIB轉發表相關的核心結構體:
熟悉Linux命令朋友一定就能認出這裡面大部分的欄位都可以通過route命令查找到。
命令執行結果如下:
在這route命令結果的欄位實際上都對應上了結構體中的欄位含義:
知道路由表的的內容後。再來FIB轉發表的內容。實際上從下面的源碼其實可以得知,路由表的獲取,實際上是先從fib轉發表的路由字典樹獲取到後在同感加工獲得路由表對象。
轉發表的內容就更加簡單
還記得在之前總結的ip地址的結構嗎?
需要進行一次tcp的通信,意味著需要把ip報文准備好。因此需要決定源ip地址和目標IP地址。目標ip地址在之前通過netd查詢到了,此時需要得到本地發送的源ip地址。
然而在實際情況下,往往是面對如下這么情況:公網一個對外的ip地址,而內網會被映射成多個不同內網的ip地址。而這個過程就是通過DDNS動態的在內存中進行更新。
因此 ip_route_connect 實際上就是選擇一個緩存好的,通過DDNS設置好的內網ip地址並找到作為結果返回,將會在之後發送包的時候填入這些存在結果信息。而查詢內網ip地址的過程,可以成為RTNetLink。
在Linux中有一個常用的命令 ifconfig 也可以實現類似增加一個內網ip地址的功能:
比如說為網卡eth0增加一個IPV6的地址。而這個過程實際上就是調用了devinet內核模塊設定好的添加新ip地址方式,並在回調中把該ip地址刷新到內存中。
注意 devinet 和 RTNetLink 嚴格來說不是一個存在同一個模塊。雖然都是使用 rtnl_register 注冊方法到rtnl模塊中:
文件:/ net / ipv4 / devinet.c
文件:/ net / ipv4 / route.c
實際上整個route模塊,是跟著ipv4 內核模塊一起初始化好的。能看到其中就根據不同的rtnl操作符號注冊了對應不同的方法。
整個DDNS的工作流程大體如下:
當然,在tcp三次握手執行之前,需要得到當前的源地址,那麼就需要通過rtnl進行查詢內存中分配的ip。
文件:/ include / net / route.h
這個方法核心就是 __ip_route_output_key .當目的地址或者源地址有其一為空,則會調用 __ip_route_output_key 填充ip地址。目的地址為空說明可能是在回環鏈路中通信,如果源地址為空,那個說明可能往目的地址通信需要填充本地被DDNS分配好的內網地址。
在這個方法中核心還是調用了 flowi4_init_output 進行flowi4結構體的初始化。
文件:/ include / net / flow.h
能看到這個過程把數據中的源地址,目的地址,源地址埠和目的地址埠,協議類型等數據給記錄下來,之後內網ip地址的查詢與更新就會頻繁的和這個結構體進行交互。
能看到實際上 flowi4 是一個用於承載數據的臨時結構體,包含了本次路由操作需要的數據。
執行的事務如下:
想要弄清楚ip路由表的核心邏輯,必須明白路由表的幾個核心的數據結構。當然網上搜索到的和本文很可能大為不同。本文是基於LInux 內核3.1.8.之後的設計幾乎都沿用這一套。
而內核將路由表進行大規模的重新設計,很大一部分的原因是網路環境日益龐大且復雜。需要全新的方式進行優化管理系統中的路由表。
下面是fib_table 路由表所涉及的數據結構:
依次從最外層的結構體介紹:
能看到路由表的存儲實際上通過字典樹的數據結構壓縮實現的。但是和常見的字典樹有點區別,這種特殊的字典樹稱為LC-trie 快速路由查找演算法。
這一篇文章對於快速路由查找演算法的理解寫的很不錯: https://blog.csdn.net/dog250/article/details/6596046
首先理解字典樹:字典樹簡單的來說,就是把一串數據化為二進制格式,根據左0,右1的方式構成的。
如圖下所示:
這個過程用圖來展示,就是沿著字典樹路徑不斷向下讀,比如依次讀取abd節點就能得到00這個數字。依次讀取abeh就能得到010這個數字。
說到底這種方式只是存儲數據的一種方式。而使用數的好處就能很輕易的找到公共前綴,在字典樹中找到公共最大子樹,也就找到了公共前綴。
而LC-trie 則是在這之上做了壓縮優化處理,想要理解這個演算法,必須要明白在 tnode 中存在兩個十分核心的數據:
這負責什麼事情呢?下面就簡單說說整個lc-trie的演算法就能明白了。
當然先來看看方法 __ip_dev_find 是如何查找
文件:/ net / ipv4 / fib_trie.c
整個方法就是通過 tkey_extract_bits 生成tnode中對應的葉子節點所在index,從而通過 tnode_get_child_rcu 拿到tnode節點中index所對應的數組中獲取葉下一級別的tnode或者葉子結點。
其中查找index最為核心方法如上,這個過程,先通過key左移動pos個位,再向右邊移動(32 - bits)演算法找到對應index。
在這里能對路由壓縮演算法有一定的理解即可,本文重點不在這里。當從路由樹中找到了結果就返回 fib_result 結構體。
查詢的結果最為核心的就是 fib_table 路由表,存儲了真正的路由轉發信息
文件:/ net / ipv4 / route.c
這個方法做的事情很簡單,本質上就是想要找到這個路由的下一跳是哪裡?
在這裡面有一個核心的結構體名為 fib_nh_exception 。這個是指fib表中去往目的地址情況下最理想的下一跳的地址。
而這個結構體在上一個方法通過 find_exception 獲得.遍歷從 fib_result 獲取到 fib_nh 結構體中的 nh_exceptions 鏈表。從這鏈表中找到一模一樣的目的地址並返回得到的。
文件:/ net / ipv4 / tcp_output.c
㈤ 關於Android Socket 新手求教!
1.1什麼是Socket Socket
是一種抽象層,應用程序通過它來發送和接收數據,使用Socket可以將應用程序添加到網路中,與處於同一網路中的其他應用程序進行通信。簡單來說,Socket提供了程序內部與外界通信的埠並為通信雙方的提供了數據傳輸通道。
1.2Socket的分類
根據不同的的底層協議,Socket的實現是多樣化的。本指南中只介紹TCP/IP協議族的內容,在這個協議族當中主要的Socket類型為流套接字(streamsocket)和數據報套接字(datagramsocket)。流套接字將TCP作為其端對端協議,提供了一個可信賴的位元組流服務。數據報套接字使用UDP協議,提供數據打包發送服務。
下面,我們來認識一下這兩種Socket類型的基本實現模型。
二、Socket 基本通信模型
詳細