當前位置:首頁 » 安卓系統 » android機制分析

android機制分析

發布時間: 2022-12-06 08:39:00

A. android進程管理機制

Android系統與其他操作系統有個很不一樣的地方,就是其他操作系統盡可能移除不再活動的進程,從而盡可能保證多的內存空間,而Android系統卻是反其道而行之,盡可能保留進程。Android這樣設計有什麼優勢呢?又是通過怎樣的方法來管理這些被保留的進程的呢?Android用戶又該如何正確使用手機從而更好發揮Android系統所特有的優勢呢?本文將一一為您解開這些謎團。

      本文的主要內容如下:

一、Android進程管理的特殊設計

       Linux系統對進程的管理方式是一旦進程活動停止,系統就會結束該進程。盡管Android基於Linux Kernel,但在進程管理上,卻採取了另外一種獨特的設計:當進程活動停止時,系統並不會立刻結束它,而是會盡可能地將該進程保存在內存中,在以後的某個時間,一旦需要該進程,系統就會立即打開它,而不用再做一些初始化操作。只有當剩餘內存不夠用了,為了維持新開啟的進程或者比較重要的進程的正常運行,系統才會選擇性地殺掉一些不重要的內存,騰出內存空間來,所以Android系統永遠不會有內存不足的提示。

二、Android獨特進程管理設計的好處

      Android這種獨特的設計,也正是Android標榜的優勢之一,這有兩個好處:

  1、最大限度地提高內存的使用率。

       比如,你的內存是8G,如果每次使用完某個進程就殺掉,那麼被使用的內存基本上會始終保持在某個值,比如4G以內,那麼內存的使用率就總是保存在50%以內,剩餘的4G內存形同虛設,發揮用處的機會非常少。而Android的這種設計,就可以做到有多少內存就用多少內存,盡可能大地提高內存使用率。同樣比如有8G內存,使用完的進程仍保留在內存中,累積下來,被使用的內存就盡可能地會接近8G。

  2、提高再次啟動時的啟動速度

       被駐留在內存中不再活動的進程(後台進程或空進程,後面會再講到),很多是經常需要使用的,當再次使用該進程的時候,系統立即打開它,而不需要再重新初始化。例如,我們常用的瀏覽器,當暫時不再使用時,按下Home鍵或Back鍵,瀏覽器進程就變成了不再活動的進程。如果下次又要使用了,點擊多任務鍵,在最近使用應用列表中點擊瀏覽器即可,瀏覽器界面仍然保持著退出前的界面。但如果退出時把該進程移除了,那麼再次使用時,就需要重新初始化,然後進入該應用,這往往會花費不少的時間。

三、Android進程的五個等級

        Android系統將盡量長時間地保持應用進程,但為了新建進程或運行更重要的進程,最終需要移除舊進程來回收內存。為了確定保留或終止哪些進程,系統會根據進程中正在運行的組件以及這些組件的狀態,將每個進程放入「重要性層次結構」中。必要時,系統會首先消除重要性最低的進程,然後是重要性略遜的進程,以此類推,以回收系統資源。該「重要性層級結構」將進程分為了五個等級:

  1、前台進程(foreground)

       前台進程是指那些有組件正和用戶進行交互的應用程序的進程,也稱為Active進程。這些都是Android嘗試通過回收其他應用程序來使其保持相應的進程。這些進程的數量非常少,只有等到最後關頭才會終止這些進程,是用戶最不希望終止的進程。例如:而當你運行瀏覽器這類應用時,它們的界面就會顯示在前台,它們就屬於前台進程,當你按home鍵回到主界面,他們就變成了後台程序。

       如果一個進程滿足以下任一條件,即視為前台進程:

     (1)託管處於活動狀態的Activity,也就是說,它們位於前台並對用戶事件進行響應,此時的情形為響應了Activity中的onResume()生命周期方法,但沒有響應onPause()。

     (2)託管正在執行onReceive()方法處理事件程序的BroadcastReceiver。

     (3)託管正在執行onStart()、onCreate()或onDestroy()事件處理程序的Service。

     (4)託管正在運行且被標記為在前台運行的Service,即調用了該Service的startForeground()方法。

     (5)託管某個Service,且該Service正綁定在用戶正在交互的Activity的Service,即該Activity正處於活動狀態。

  2、可見進程(visible)

        沒有任何前台組件、但仍然會影響用戶在屏幕上所見內容的進程。如果一個進程滿足以下任一條件,即視為可見進程:

    (1)託管不在前台、但仍對用戶可見的Activity(已調用其onPause()方法)。例如:如果前台Acitivty啟動了一個對話框,或者啟動了一個非全屏,亦或是一個透明的Activity,允許在其後顯示上一個Activity,則可能會發生這種情況,這類Activity不在前台運行,也不能對用戶事件作出反應。

    (2)託管綁定到可見Activity的Service。(官網上說是綁定到可見或前台Activity,但筆者有一點疑問,這個和「前台進程」中第(5)點相矛盾嗎,綁定到前台Activity,那就是前台進程了)

        可見進程被視為是極其重要的進程,這類進程的數量也很少,只有在資源極度匱乏的環境下,為保證前台進程繼續執行時才會終止。

  3、服務進程(Service)

        正在運行已使用startService()方法啟動的Serice且不屬於上述兩個更高類別進程的進程。盡管服務進程與用戶所見內容沒有直接關聯,但是它們通常在執行一些用戶關心的操作。因此,除非內存不足以維持所有前台進程和可見進程同時運行,否則系統會讓服務進程保持運行狀態。

       有些資料上面也稱這種進程為次要服務(Secondary Service),而屬於上述兩個更高類別的進程則被稱為主要服務,主要服務往往屬於系統進程,如撥號進程等,不可能被進程管理輕易終止。這里我們以Android開發者官網的稱呼為標准,稱為服務進程。

  4、後台進程(hidden)

       包含目前對用戶不可見的Activity,即該Activity調用了onStop()方法。這些進程對用戶體驗沒有直接影響,系統可能隨時終止它們,以回收內存供上述三個更高級別的進程使用。通常會有很多後台進程在運行,它們會保存在LRU(Least Recently Used,最近最少使用)列表中,以確保包含用戶最近查看的Activity的進程最後一個被終止。如果某個Activity正確實現了生命周期方法,並保存了其當前狀態,則終止其進程不會對用戶體驗產生明顯影響,因為當用戶導航回該Activity時,Activity會恢復其所有可見狀態。

       這里讀者可以做個試驗,先開啟微信,進入到朋友圈界面, 然後點擊手機屏幕下方的導航欄中的Home按鍵進入到後台,再點擊最近使用應用列表顯示按鈕(不同的手機位置不一樣,有的在Home鍵左邊,有的則在Home鍵右邊),在顯示的最近使用應用的列表中清理掉微信應用,最後再點擊桌面的微信圖標啟動微信,會發現顯示的界面仍然是朋友圈界面。

       後台進程,我們可以簡單理解為,應用(只考慮只有Activity組件的情況)啟動後按Home鍵後被切換到後台的進程。如瀏覽器、閱讀器等,當程序顯示在屏幕上時,它們所運行的進程即為前台進程(foreground),一旦按home鍵(注意不是back鍵)返回到桌面,程序就停留在後台,成為後台進程。

  5、空進程(empty)

       不含任何活動應用組件的進程。保留這種進程的唯一目的是用作緩存,以縮短下次再其中運行組件所需要的啟動時間。一般來說,當應用按back按鍵退出後應用後,就變成了一個空進程。比如BTE,在程序退出後,依然會在進程中駐留一個空進程,這個進程里沒有任何數據在運行,作用往往是提高該程序下次的啟動速度或者記錄程序的一些歷史信息。當系統內存不夠用時,無疑,該進程是應該最先終止的。在最近使用應用列表中,可以看到按back鍵退出的應用。

       根據進程中當前活動組件的重要程度,Android會將進程評定為它可能達到的最高級別。通俗地說,就是如果一個進程同時擁有多個對應上述不同等級進程的組件時,會以最高的那個等級作為該進程的等級。例如,如果某進程託管著服務和可見Activity,則會將此進程評定為可見進程,而不是服務進程。

       此外,一個進程的級別可能會因為其他進程對它的依賴而有所提高,即服務於另一進程的進程其級別永遠不會低於其所服務的進程。例如,如果進程A中的內容提供程序為進程B中的客戶端提供服務,或者如果進程A中的服務綁定到進程B中的組件,則進程A始終被視為至少與進程B同樣重要。

       由於運行服務的進程其級別高於託管後台Activity的進程,因此啟動長時間運行操作的Activity最好為該操作啟動Service,而不是簡單地創建工作線程,當操作有可能比Activity更加持久時更應該如此。例如,正在將圖片上傳到網站的Activity應該啟動服務來執行上傳,這樣一來,即使用戶退出Activity,仍可在後台繼續執行上傳操作。使用服務可以保證,無論Activity發生什麼情況,該操作至少具備「服務進程」優先順序。如果某個Activity開啟了線程執行耗時操作,當Activity退出時,該Activity的實例將不會釋放內存資源,直到線程執行完,這樣容易導致內存泄漏。同理,廣播接收器也應該使用服務,而不是簡單地將耗時冗長的操作放入線程中。

四、進程移除順序的依據——閾(yu,第四聲)值

        前面講到,內存不夠用時,會根據進程的等級來決定優先回收哪類進程。那麼系統是根據什麼來判斷需要移除這些進程的時機的呢?答案是閾值。

  1、查看閾值

        我們可以採用如下方法查看手機中各個等級進程的閾值(需要root許可權),如第二排數據所示(其單位為頁):

       以第一個數據44032為例,計算方法為:

       1page=4KB=4*1024B=4096B

       44032page* 4048B/page =  180355072B

       180355072B/1024/1024 = 172M

       即第一個等級的進程的閾值為172M。依次類推,閾值依次為:172M,190M,208M,226M,316M,415M。

       有必要說明一下,在Android開發者官方文檔中,是將Android應用進程分為了5個等級,但很多資料卻是分的6個等級,在後台進程和空進程之間還有一個「內容提供節點(content provider)進程」。內容提供節點,沒有實體程序,僅提供內容供別的程序去用 ,比如日歷供應節點,郵件供應節點等,在終止進程時,這類進程有比較高的優先權。手機中應該是採用的6個等級的方式,如上六個數據,正好對應著六個等級的進程,等級越高,閾值越低,即前台進程閾值為172M,空進程為415M。當系統的剩餘內存只剩餘不到415M的時候,系統首先會回收空進程,依次類推,只有剩餘內存不到172M了,才會去回收前台進程,這樣就起到了優化保護重要進程的作用。

五、Home鍵、Back鍵和多任務鍵

       Home鍵、Back鍵和多任務鍵,在手機屏幕的下方,這三個按鍵一般稱為導航欄,中間的按鈕為Home鍵,多任務鍵和Back鍵分別在其左右,一般根據手機品牌不同,左右位置也有所差異。

       在運行App的時候,如果按一下Home鍵或者Back鍵,都可以退到桌面,那麼這兩者有什麼區別呢?

Home鍵。按Home鍵的時候,App如果沒有Service開啟,會從一個前台進程轉變為一個後台進程;如果有前台service運行,就仍然是前台進程,比如QQ音樂播放器等;如果是只有普通service運行,那麼就轉變為服務進程(參照前文中講的Android進程的5個級別)。

Back鍵。按Back鍵的時候,App如果沒有Service開啟,會從一個前台進程轉變為一個空進程;對於有Service運行的情況,和按Home鍵一樣。

        後台進程和空進程,都是駐留在後台,處於暫停狀態,也都是除了佔用一部分內存外,不佔用其他如cpu等資源的,那麼問題來了,為什麼要設計後台進程和空進程這兩種空進程呢?它們的區別到底在哪裡呢?我們在前文講Android進程的5個等級的時候講到過,當剩餘內存不足的時候,系統會按照等級順序,優先移除不太重要進程,以收回內存供更重要的進程運行。那麼,它們的區別就是,在剩餘內存不足時,會優先移除空進程,再不足,才會移除空進程。所以,如果確實要退出某個應用一段時間內不大使用了,如果這款應用有退出按鈕,就用應用自帶的退出功能;如果沒有,則最好按系統的Back鍵,這樣可以變成空進程,當系統要回收內存時,就會優先被回收,從而釋放的所佔的資源。如果只是暫時退出去做點別的,過一會還要切換回來,或者對這款應用使用比較頻繁,那就使用Home鍵,因為相比於按Back鍵,這樣可以盡可能保住後台進程,方便下次使用的時候快速啟動。

       當然,按Home鍵或Back鍵,對用戶來說,其實感覺不到差異,使用起來沒什麼兩樣,但是,對於Android開發者來說,卻有必要作為常識來了解其中的道理和差異。無論是按Home鍵還是按Back鍵,在按多任務鍵的時候,都可以看到這些進程,如下圖所示。最下面的按鍵為清理按鍵,點擊後可以清除掉這些進程,回收內存了,當然,前面也講了很多遍了,不建議這樣做。

  2、修改閾值。

       可以採用命令:echo "44032,48640,53248,57856,80896,106241" > /sys/mole/lowmemorykiller/parameters/minfree來修改閾值,如下所示:

       重啟後,會恢復為原來的值。至於如何永久性修改該閾值,這里不深入探討,有興趣的童鞋可以自行研究,一般來說,就按照系統給定的默認值使用就可以了,沒特殊用途的話,沒必要修改。

       對於這一節閾值的內容,暫時先講到這里,如果要更深入,可以自行多研究研究。筆者也沒有看到比較好的更深入的文章,所以也不好推薦,如果讀者看到比較好的,可以推薦給筆者,感激不盡。

六、開發者選項中的進程管理功能

        Android手機都帶有開發者選項,隱藏了很多功能,顧名思義,這些功能主要用於輔助開發者調試程序用的。其中有一些就是關於進程管理功能的,筆者這里簡單介紹一下其中兩款,如下圖紅框部分所示:

不保留活動。用戶離開以後即銷毀每個活動(Activity),這樣做使得後台進程都被銷毀了。筆者試驗過幾款app,比如微信,瀏覽器,開啟/關閉「不保留活動」前後,按Home鍵後,再打開應用,有明顯的差別。當然,也試用了簡訊,DD打車,就沒看出起了什麼作用。讀者若是感興趣可以深入研究研究,到時候在指導指導筆者!

後台進程限制。如下圖所示,給出了後台進程個數限制的選項。

七、進程管理軟體的使用

       Windows操作系統用戶往往總想著保留更多的內存,在使用Android手機的時候,喜歡經常清理後台進程或空進程,而且清理完後,心裡有一種特別爽的感覺,就像給家裡做了一次大掃除一樣,筆者最初使用Android手機的時候也是這樣的心態-_-!基於這樣的心態,一些進程清理軟體,很受普通用戶的青睞。其實這樣做卻正好抹殺了Android系統所標榜的優勢,如前文所講到的。

       那麼進程管理軟體有無必要呢?當然有的,只是需要注意使用場合。當需要運行大型程序的時候,可以手動關閉掉一些進程,騰出足夠的空間供大型程序使用,這樣就可以有效避免系統調用進程調度策略而引起的卡頓,這一點,第八大點第3小節中會有說明。而且由於開發者的原因,可能是程序寫得太爛,或程序容易出錯,或做不該做的動作,或是惡意程序,對於這類程序進程,手動移除也是有好處的。

       但如果是運行一些小程序,就完全沒有必要去預先殺進程了,完全可以交給系統自己管理。讀者可能會疑惑,因為小程序啟動的時候,也有可能會因為內存不足而導致需要移除部分進程的情況。筆者認為,即便是內存不足,小程序運行引起的調用進程調度策略測的次數非常少,要移除的進程也非常少,產生的影響不大。同時,我們也要意識到另外一點就是,無論是手動殺死進程還是自動殺進程,都需要cpu去執行這些任務,所以也會拖慢手機和消耗電量。所以從這一點看,頻繁殺進程,也是一個不好的習慣。

八、答疑解惑

        在以前沒有專門去了解Android進程管理機制的時候,甚至是在研究的過程中,筆者心裡都經常存在很多疑惑,以下整理了其中5個,不知道讀者您是否有也類似的困惑呢?

  1、這么多駐留在內存的進程,不會耗電嗎?

       大多數用慣了Windows操作系統的童鞋,看到Android系統盡可能保留不在活動的進程的設計,可能第一反應就是質疑,難道這樣不會增加耗電量嗎?其實,但一個程序按home鍵變成後台進程或者按back鍵退出變成空進程後,其實已經被暫停了,只保留了運行狀態,不會消耗cpu,一個程序會耗電,是因為它需要調用cpu來運算,現在不消耗cpu了,當然就不會耗電了。當然,開了service的應用就另當別論了,比如QQ音樂播放器,當按home鍵或back鍵後,音樂仍然播放,是因為它開啟了服務,而且是一個前台服務,在後面我們會繼續講到,此時它是一個前台進程,而不是後台進程或空進程。

  2、為什麼一個不太app,運行時會佔用很大的內存呢?

我們經常會碰到這樣一種現象,一個只有20M的App,運行起來的時候,卻會耗掉100M以上的內存。一方面是,程序運行時為對象分配內存,另一方面,是Android虛擬機的原因。Android中的應用啟動的時候,系統都會給它開啟一個獨立的虛擬機,這樣做的好處是可以避免虛擬機崩潰導致整個系統崩潰,代價就是耗用更多的內存。

  3、為什麼內存少的時候,運行大型程序會卡頓呢?

        當剩餘內存不多時,打開大型程序,系統會觸發自身的進程調度策略,去移除一些等級比較低的進程來回收內存,以供大型程序運行。而這個進程調度策略在決定哪些進程需要被移除的過程,是一個十分消耗資源的操作,特別是一個程序頻繁像系統申內存的時候,這樣就導致了系統的卡頓。

 4、應用開得太多了,手機變慢,是因為內存被佔用太多嗎?

        其實手機變慢的根本原因是cpu被耗用太多,而不是內存佔用太多,因為真正執行程序所要完成的任務的最終執行者是CPU,而不是內存(RAM)。在內存足夠的情況下,如果系統中佔用cpu的進程太多,那無疑cpu總有忙不過來的時候,那肯定就會變慢了。這就好比,在一條道路上駕車,道路就像內存,車的引擎就像cpu,如果車的引擎的動力不夠,或者承載的貨物太多,車都跑不快,即便是道路上一路暢通無阻,也無濟於事。所以,內存佔用多少並不重要,只要道路提供給車輛前行的空間是足夠的,手機變慢的責任,就和內存無關了。這個比喻用來解釋第三點也很恰當,道路提供的車輛前進的空間無法滿足車輛所必需的空間時,就需要交通機制花時間來調節交通,給這輛車提供足夠的空間,而在此期間,這輛車只能乖乖候著。

  5、Android手機越用越慢,是什麼原因呢?

Android手機常常是越用越慢,即使是恢復出廠設置,也無法改變這個現象。手機越用越慢,主要由如下幾個原因:(1)虛擬機機制問題。這一點在上一個問題中也提到了,在Android4.4以前的系統,使用的是Dalvik虛擬機,它的設計機制有缺陷,就是越用越慢;在Android4.4系統中有切換按鈕,可以在Art虛擬機和Dalvik虛擬機之間切換;在Android4.4以後的系統就徹底拋棄了Dalvik而全面使用Art。(2)開啟了太多的服務,導致耗用太多的CPU。隨著手機開機使用時間的增長,應用使用越來越多,很多應用看似退出了,而其實後台可能開了不少的服務,而他們可能還沒有關閉。這些服務正在執行一些操作,會消耗CPU,而CPU才是手機變慢的根本原因。 而且Android app比較開放的,有很多不良應用充斥其中,可能對服務處理不當,濫用服務等,增加系統中的服務。(3)系統頻繁調用自身的進程調度演算法。這一點在前面已經說明了,這里不再贅述。(4)手機硬體的自然老化

B. [Android源碼分析] - 非同步通信Handler機制

一、問題:在Android啟動後會在新進程里創建一個主線程,也叫UI線程( 非線程安全 )這個線程主要負責監聽屏幕點擊事件與界面繪制。當Application需要進行耗時操作如網路請求等,如直接在主線程進行容易發生ANR錯誤。所以會創建子線程來執行耗時任務,當子線程執行完畢需要通知UI線程並修改界面時,不可以直接在子線程修改UI,怎麼辦?

解決方法:Message Queue機制可以實現子線程與UI線程的通信。

該機制包括Handler、Message Queue、Looper。Handler可以把消息/ Runnable對象 發給Looper,由它把消息放入所屬線程的消息隊列中,然後Looper又會自動把消息隊列里的消息/Runnable對象 廣播 到所屬線程里的Handler,由Handler處理接收到的消息或Runnable對象。

1、Handler

每次創建Handler對象時,它會自動綁定到創建它的線程上。如果是主線程則默認包含一個Message Queue,否則需要自己創建一個消息隊列來存儲

Handler是多個線程通信的信使。比如在線程A中創建AHandler,給它綁定一個ALooper,同時創建屬於A的消息隊列AMessageQueue。然後在線程B中使用AHandler發送消息給ALooper,ALooper會把消息存入到AMessageQueue,然後再把AMessageQueue廣播給A線程里的AHandler,它接收到消息會進行處理。從而實現通信。

2、Message Queue

在主線程里默認包含了一個消息隊列不需要手動創建。在子線程里,使用Looper.prepare()方法後,會先檢查子線程是否已有一個looper對象,如果有則無法創建,因為每個線程只能擁有一個消息隊列。沒有的話就為子線程創建一個消息隊列。

Handler類包含Looper指針和MessageQueue指針,而Looper里包含實際MessageQueue與當前線程指針。

下面分別就UI線程和worker線程講解handler創建過程:

首先,創建handler時,會自動檢查當前線程是否包含looper對象,如果包含,則將handler內的消息隊列指向looper內部的消息隊列,否則,拋出異常請求執行looper.prepare()方法。

 - 在 UI線程 中,系統自動創建了Looper 對象,所以,直接new一個handler即可使用該機制;

- 在 worker線程 中,如果直接創建handler會拋出運行時異常-即通過查『線程-value』映射表發現當前線程無looper對象。所以需要先調用Looper.prepare()方法。在prepare方法里,利用ThreadLocal<Looper>對象為當前線程創建一個Looper(利用了一個Values類,即一個Map映射表,專為thread存儲value,此處為當前thread存儲一個looper對象)。然後繼續創建handler, 讓handler內部的消息隊列指向該looper的消息隊列(這個很重要,讓handler指向looper里的消息隊列,即二者共享同一個消息隊列,然後handler向這個消息隊列發送消息,looper從這個消息隊列獲取消息) 。然後looper循環消息隊列即可。當獲取到message消息,會找出message對象里的target,即原始發送handler,從而回調handler的handleMessage() 方法進行處理。

 - handler與looper共享消息隊列 ,所以handler發送消息只要入列,looper直接取消息即可。

 - 線程與looper映射表 :一個線程最多可以映射一個looper對象。通過查表可知當前線程是否包含looper,如果已經包含則不再創建新looper。

5、基於這樣的機制是怎樣實現線程隔離的,即在線程中通信呢。 

核心在於 每一個線程擁有自己的handler、message queue、looper體系 。而 每個線程的Handler是公開 的。B線程可以調用A線程的handler發送消息到A的共享消息隊列去,然後A的looper會自動從共享消息隊列取出消息進行處理。反之一樣。

二、上面是基於子線程中利用主線程提供的Handler發送消息出去,然後主線程的Looper從消息隊列中獲取並處理。那麼還有另外兩種情況:

1、主線程發送消息到子線程中;

採用的方法和前面類似。要在子線程中實例化AHandler並設定處理消息的方法,同時由於子線程沒有消息隊列和Looper的輪詢,所以要加上Looper.prepare(),Looper.loop()分別創建消息隊列和開啟輪詢。然後在主線程中使用該AHandler去發送消息即可。

2、子線程A與子線程B之間的通信。

1、 Handler為什麼能夠實現不同線程的通信?核心點在哪?

不同線程之間,每個線程擁有自己的Handler、消息隊列和Looper。Handler是公共的,線程可以通過使用目標線程的Handler對象來發送消息,這個消息會自動發送到所屬線程的消息隊列中去,線程自帶的Looper對象會不斷循環從裡面取出消息並把消息發送給Handler,回調自身Handler的handlerMessage方法,從而實現了消息的線程間傳遞。

2、 Handler的核心是一種事件激活式(類似傳遞一個中斷)的還是主要是用於傳遞大量數據的?重點在Message的內容,偏向於數據傳輸還是事件傳輸。

目前的理解,它所依賴的是消息隊列,發送的自然是消息,即類似事件中斷。

0、 Android消息處理機制(Handler、Looper、MessageQueue與Message)

1、 Handler、Looper源碼閱讀

2、 Android非同步消息處理機制完全解析,帶你從源碼的角度徹底理解

謝謝!

wingjay

![](https://avatars0.githubusercontent.com/u/9619875?v=3&s=460)

C. Android V1及V2簽名原理簡析

Android為了保證系統及應用的安全性,在安裝APK的時候需要校驗包的完整性,同時,對於覆蓋安裝的場景還要校驗新舊是否匹配,這兩者都是通過Android簽名機制來進行保證的,本文就簡單看下Android的簽名與校驗原理,分一下幾個部分分析下:

簽名是摘要與非對稱密鑰加密相相結合的產物,摘要就像內容的一個指紋信息,一旦內容被篡改,摘要就會改變,簽名是摘要的加密結果,摘要改變,簽名也會失效。Android APK簽名也是這個道理,如果APK簽名跟內容對應不起來,Android系統就認為APK內容被篡改了,從而拒絕安裝,以保證系統的安全性。目前Android有三種簽名V1、V2(N)、V3(P),本文只看前兩種V1跟V2,對於V3的輪密先不考慮。先看下只有V1簽名後APK的樣式:

再看下只有V2簽名的APK包樣式:

同時具有V1 V2簽名:

可以看到,如果只有V2簽名,那麼APK包內容幾乎是沒有改動的,META_INF中不會有新增文件,按Google官方文檔:在使用v2簽名方案進行簽名時,會在APK文件中插入一個APK簽名分塊,該分塊位於zip中央目錄部分之前並緊鄰該部分。在APK簽名分塊內, 簽名和簽名者身份信息會存儲在APK簽名方案v2分塊中,保證整個APK文件不可修改 ,如下圖:

而V1簽名是通過META-INF中的三個文件保證簽名及信息的完整性:

V1簽名是如何保證信息的完整性呢?V1簽名主要包含三部分內容,如果狹義上說簽名跟公鑰的話,僅僅在.rsa文件中,V1簽名的三個文件其實是一套機制,不能單單拿一個來說事,

如果對APK中的資源文件進行了替換,那麼該資源的摘要必定發生改變,如果沒有修改MANIFEST.MF中的信息,那麼在安裝時候V1校驗就會失敗,無法安裝,不過如果篡改文件的同時,也修改其MANIFEST.MF中的摘要值,那麼MANIFEST.MF校驗就可以繞過。

CERT.SF個人覺得有點像冗餘,更像對文件完整性的二次保證,同繞過MANIFEST.MF一樣,.SF校驗也很容易被繞過。

CERT.RSA與CERT.SF是相互對應的,兩者名字前綴必須一致,不知道算不算一個無聊的標准。看下CERT.RSA文件內容:

CERT.RSA文件裡面存儲了證書公鑰、過期日期、發行人、加密演算法等信息,根據公鑰及加密演算法,Android系統就能計算出CERT.SF的摘要信息,其嚴格的格式如下:

從CERT.RSA中,我們能獲的證書的指紋信息,在微信分享、第三方SDK申請的時候經常用到,其實就是公鑰+開發者信息的一個簽名:

除了CERT.RSA文件,其餘兩個簽名文件其實跟keystore沒什麼關系,主要是文件自身的摘要及二次摘要,用不同的keystore進行簽名,生成的MANIFEST.MF與CERT.SF都是一樣的,不同的只有CERT.RSA簽名文件。也就是說前兩者主要保證各個文件的完整性,CERT.RSA從整體上保證APK的來源及完整性,不過META_INF中的文件不在校驗范圍中,這也是V1的一個缺點。V2簽名又是如何保證信息的完整性呢?

前面說過V1簽名中文件的完整性很容易被繞過,可以理解 單個文件完整性校驗的意義並不是很大 ,安裝的時候反而耗時,不如採用更加簡單的便捷的校驗方式。V2簽名就不針對單個文件校驗了,而是 針對APK進行校驗 ,將APK分成1M的塊,對每個塊計算值摘要,之後針對所有摘要進行摘要,再利用摘要進行簽名。

也就是說,V2摘要簽名分兩級,第一級是對APK文件的1、3 、4 部分進行摘要,第二級是對第一級的摘要集合進行摘要,然後利用秘鑰進行簽名。安裝的時候,塊摘要可以並行處理,這樣可以提高校驗速度。

APK是先摘要,再簽名,先看下摘要的定義:Message Digest:摘要是對消息數據執行一個單向Hash,從而生成一個固定長度的Hash值,這個值就是消息摘要,至於常聽到的MD5、SHA1都是摘要演算法的一種。理論上說,摘要一定會有碰撞,但只要保證有限長度內碰撞率很低就可以,這樣就能利用摘要來保證消息的完整性,只要消息被篡改,摘要一定會發生改變。但是,如果消息跟摘要同時被修改,那就無從得知了。

而數字簽名是什麼呢(公鑰數字簽名),利用非對稱加密技術,通過私鑰對摘要進行加密,產生一個字元串,這個字元串+公鑰證書就可以看做消息的數字簽名,如RSA就是常用的非對稱加密演算法。在沒有私鑰的前提下,非對稱加密演算法能確保別人無法偽造簽名,因此數字簽名也是對發送者信息真實性的一個有效證明。不過由於Android的keystore證書是自簽名的,沒有第三方權威機構認證,用戶可以自行生成keystore,Android簽名方案無法保證APK不被二次簽名。

知道了摘要跟簽名的概念後,再來看看Android的簽名文件怎麼來的?如何影響原來APK包?通過sdk中的apksign來對一個APK進行簽名的命令如下:

其主要實現在 android/platform/tools/apksig 文件夾中,主體是ApkSigner.java的sign函數,函數比較長,分幾步分析

先來看這一步,ApkUtils.findZipSections,這個函數主要是解析APK文件,獲得ZIP格式的一些簡單信息,並返回一個ZipSections,

ZipSections包含了ZIP文件格式的一些信息,比如中央目錄信息、中央目錄結尾信息等,對比到zip文件格式如下:

獲取到 ZipSections之後,就可以進一步解析APK這個ZIP包,繼續走後面的簽名流程,

可以看到先進行了一個V2簽名的檢驗,這里是用來簽名,為什麼先檢驗了一次?第一次簽名的時候會直接走這個異常邏輯分支,重復簽名的時候才能獲到取之前的V2簽名,懷疑這里獲取V2簽名的目的應該是為了排除V2簽名,並獲取V2簽名以外的數據塊,因為簽名本身不能被算入到簽名中,之後會解析中央目錄區,構建一個DefaultApkSignerEngine用於簽名

先解析中央目錄區,獲取AndroidManifest文件,獲取minSdkVersion(影響簽名演算法),並構建DefaultApkSignerEngine,默認情況下V1 V2簽名都是打開的。

第五步與第六步的主要工作是:apk的預處理,包括目錄的一些排序之類的工作,應該是為了更高效處理簽名,預處理結束後,就開始簽名流程,首先做的是V1簽名(默認存在,除非主動關閉):

步驟7、8、9都可以看做是V1簽名的處理邏輯,主要在V1SchemeSigner中處理,其中包括創建META-INFO文件夾下的一些簽名文件,更新中央目錄、更新中央目錄結尾等,流程不復雜,不在贅述,簡單流程就是:

這里特殊提一下重復簽名的問題: 對一個已經V1簽名的APK再次V1簽名不會有任何問題 ,原理就是:再次簽名的時候,會排除之前的簽名文件。

可以看到目錄、META-INF文件夾下的文件、sf、rsa等結尾的文件都不會被V1簽名進行處理,所以這里不用擔心多次簽名的問題。接下來就是處理V2簽名。

V2SchemeSigner處理V2簽名,邏輯比較清晰,直接對V1簽名過的APK進行分塊摘要,再集合簽名,V2簽名不會改變之前V1簽名後的任何信息,簽名後,在中央目錄前添加V2簽名塊,並更新中央目錄結尾信息,因為V2簽名後,中央目錄的偏移會再次改變:

簽名校驗的過程可以看做簽名的逆向,只不過覆蓋安裝可能還要校驗公鑰及證書信息一致,否則覆蓋安裝會失敗。簽名校驗的入口在PackageManagerService的install里,安裝官方文檔,7.0以上的手機優先檢測V2簽名,如果V2簽名不存在,再校驗V1簽名,對於7.0以下的手機,不存在V2簽名校驗機制,只會校驗V1,所以,如果你的App的miniSdkVersion<24(N),那麼你的簽名方式必須內含V1簽名:

校驗流程就是簽名的逆向,了解簽名流程即可,本文不求甚解,有興趣自己去分析,只是額外提下覆蓋安裝,覆蓋安裝除了檢驗APK自己的完整性以外,還要校驗證書是否一致只有證書一致(同一個keystore簽名),才有可能覆蓋升級。覆蓋安裝同全新安裝相比較多了幾個校驗

這里只關心證書部分:

Android V1及V2簽名簽名原理簡析

僅供參考,歡迎指正

D. 深入分析Android-Handler消息機制

Handler是Android消息機制的上層介面。通過它可以輕松地將一個任務切換到Handler所在的線程中去執行。通常情況下,Handler的使用場景就是 更新UI 。

在子線程中,進行耗時操作,執行完操作後,發送消息,通知主線程更新UI。

Handler消息機制主要包括: MessageQueue 、 Handler 、 Looper 這三大部分,以及 Message 。

從上面的類圖可以看出:

MessageQueue、Handler和Looper三者之間的關系: 每個線程中只能存在一個Looper,Looper是保存在ThreadLocal中的。 主線程(UI線程)已經創建了一個Looper,所以在主線程中不需要再創建Looper,但是在其他線程中需要創建Looper。 每個線程中可以有多個Handler,即一個Looper可以處理來自多個Handler的消息。 Looper中維護一個MessageQueue,來維護消息隊列,消息隊列中的Message可以來自不同的Handler。

在子線程執行完耗時操作,當Handler發送消息時,將會調用 MessageQueue.enqueueMessage ,向消息隊列中添加消息。 當通過 Looper.loop 開啟循環後,會不斷地從消息池中讀取消息,即調用 MessageQueue.next , 然後調用目標Handler(即發送該消息的Handler)的 dispatchMessage 方法傳遞消息, 然後返回到Handler所在線程,目標Handler收到消息,調用 handleMessage 方法,接收消息,處理消息。

從上面可以看出,在子線程中創建Handler之前,要調用 Looper.prepare() 方法,Handler創建後,還要調用 Looper.loop() 方法。而前面我們在主線程創建Handler卻不要這兩個步驟,因為系統幫我們做了。

初始化Looper

從上可以看出,不能重復創建Looper,每個線程只能創建一個。創建Looper,並保存在 ThreadLocal 。其中ThreadLocal是線程本地存儲區(Thread Local Storage,簡稱TLS),每個線程都有自己的私有的本地存儲區域,不同線程之間彼此不能訪問對方的TLS區域。

開啟Looper

創建Handler

發送消息

post方法:

send方法:

熱點內容
雲伺服器掛qq常用ip 發布:2025-03-13 00:52:08 瀏覽:99
大秦帝國之崛起下載緩存 發布:2025-03-13 00:34:31 瀏覽:357
xp系統f盤加密 發布:2025-03-13 00:33:42 瀏覽:129
如何讓刪除的微信恢復出廠設置密碼 發布:2025-03-13 00:21:48 瀏覽:254
七殺腳本 發布:2025-03-13 00:19:28 瀏覽:762
建立多級文件夾 發布:2025-03-13 00:13:34 瀏覽:725
存儲器價格 發布:2025-03-13 00:12:14 瀏覽:761
編譯原理上下文無關文法例題 發布:2025-03-13 00:12:12 瀏覽:95
微視頻腳本怎麼寫 發布:2025-03-12 23:59:54 瀏覽:611
蘋果手機文件夾管理 發布:2025-03-12 23:59:12 瀏覽:100